Как выбрать

Каменные конструкции в условиях высокой сейсмичности. Сейсмичность россии Повышенная сейсмичность

Каменные конструкции в условиях высокой сейсмичности. Сейсмичность россии Повышенная сейсмичность

СЕЙСМИЧНОСТЬ подверженность данного района землетрясениям, характеризующаяся распределением и повторяемостью землетрясений разной силы во времени и характером разрушений

(Болгарский язык; Български) - сеизмичност

(Чешский язык; Čeština) - seismicita

(Немецкий язык; Deutsch) - Seismik

(Венгерский язык; Magyar) - szeizmicitás

(Монгольский язык) - газар хөдлөлт

(Польский язык; Polska) - sejsmiczność

(Румынский язык; Român) - seismicitate

(Сербско-хорватский язык; Српски језик; Hrvatski jezik) - seizmičnost

(Испанский язык; Español) - sismicidad

(Английский язык; English) - seismicity

(Французский язык; Français) - s(e)ismicité

Строительный словарь .

Синонимы :

Смотреть что такое "СЕЙСМИЧНОСТЬ" в других словарях:

    Сейсмичность - вероятная интенсивность землетрясения в баллах по шкале MSK 64. Источник: РД 31.3.06 2000: Руководство по учету сейсмических во … Словарь-справочник терминов нормативно-технической документации

    сейсмичность - Подверженность Земли или отдельных территорий землетрясениям. Примечание Сейсмичность характеризуется территориальным распределением очагов, интенсивностью и другими характеристиками землетрясений. [РД 01.120.00 КТН 228 06] сейсмичность… … Справочник технического переводчика

    1) возможность и периодичность возникновения землетрясения определенной интенсивностью; 2) распределение в пространстве и времени очагов землетрясений различных амплитуд, обусловленное тектоническими подвижками пород земной коры и верхней мантии… … Словарь черезвычайных ситуаций

    Сущ., кол во синонимов: 2 высокосейсмичность (1) подверженность землетрясениям (1) Словарь синони … Словарь синонимов

    Проявление землетрясений. С. региона характеризуется распределением землетрясений по площади, повторяемостью землетрясений разной силы во времени, характером разрушений и деформаций и площадью разрушений, связью очагов землетрясений с геол.… … Геологическая энциклопедия

    Сейсмичность - совокупность очагов землетрясений в пространстве и времени... Источник: ПОСТАНОВЛЕНИЕ Госатомнадзора РФ от 28.12.2001 N 16 ОБ УТВЕРЖДЕНИИ И ВВЕДЕНИИ В ДЕЙСТВИЕ РУКОВОДСТВА ПО БЕЗОПАСНОСТИ ОЦЕНКА СЕЙСМИЧЕСКОЙ ОПАСНОСТИ УЧАСТКОВ РАЗМЕЩЕНИЯ ЯДЕРНО И … Официальная терминология

    сейсмичность - Подверженность Земли или отдельных территорий землетрясениям, определяемая их интенсивностью и частотой в данном регионе. Syn.: сейсмическая активность … Словарь по географии

    Сейсмотерминология свод наиболее важных терминов и понятий, используемых в практике антисейсмического проектирования энергетического оборудования и трубопроводов атомных и тепловых электростанций. Антисеймическое проектирование комплекс… … Википедия

    Ж. Подверженность землетрясениям. Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой

    Сейсмичность, сейсмичности, сейсмичности, сейсмичностей, сейсмичности, сейсмичностям, сейсмичность, сейсмичности, сейсмичностью, сейсмичностями, сейсмичности, сейсмичностях (Источник: «Полная акцентуированная парадигма по А. А. Зализняку») … Формы слов

Книги

  • Статистическая гидрометеорология. Часть 2. Турбулентность и волны. Учебное пособие , В. А. Рожков. Во второй части `Статистической гидрометеорологии` (1-я часть - `Турбулентность и волны` - вышла в издательстве СПбГУ в 2013 г.) обсуждаются закономер ности разномасштабной изменчивости…
  • Современные методы измерения, обработки и интерпретации электромагнитных данных. Электромагнитное зондирование Земли и сейсмичность , Спичак В.В.. Настоящая книга подготовлена на основе лекций, прочитанных ведущими российскими и иностранными учеными участникам III Всероссийской школы-семинара по электромагнитным зондированиям Земли…

Один ученый образно сказал о сейсмике, что «вся наша цивилизация строится и развивается на крышке котла, внутри которого кипят страшные, необузданные тектонические стихии, и никто не застрахован оттого, что хотя бы раз в жизни не окажется на этой прыгающей крышке».

Эти "весёлые" слова довольно вольно трактуют проблему. Существует строгая наука, называемая сейсмологией («сейсмос» по-гречески означает «землетрясение», а термин этот ввёл в употребление около 120 лет назад ирландский инженер Роберт Мале), согласно которой причины возникновения землетрясений можно разделить на три группы:

· Карстовые явления. Это растворение карбонатов, содержащихся в грунте, образование полостей, способных обрушиться. Землетрясения, вызванные этим явлением, обычно имеют небольшую силу.

· Вулканическая деятельность. В качестве примера можно привести землетрясение, вызванное извержением вулкана Кракатау в проливе между островами Ява и Суматра в Индонезии в 1883 году. На 80 км в воздух поднялся пепел, его выпало свыше 18 км 3 , это вызывало в течение нескольких лет яркие зори. Извержение и морская волна высотой свыше 20 м привели к гибели десятков тысяч человек на соседних островах. Но всё же землетрясения, вызванные вулканической деятельностью, наблюдаются относительно редко.

· Тектонические процессы. Именно из-за них и происходит большинство землетрясений на Земном шаре.

«Тектоникос» в переводе с греческого - «строить, строитель, строение». Тектоника – наука о строении земной коры, самостоятельная отрасль геологии.

Существует геологическая гипотеза фиксизма, исходящая из представлений о незыблемости (фиксированности) положений континентов на поверхности Земли и о решающей роли вертикально направленных тектонических движений в развитии земной коры.

Фиксизм противопоставляется мобилизму – геологической гипотезе, впервые высказанной немецким геофизиком Альфредом Вегенером в 1912 году и предполагающей большие (до нескольких тыс. км) горизонтальные перемещения крупных литосферных плит. Наблюдения из космоса позволяют говорить о безусловной правоте этой гипотезы.

Земная кора – верхняя оболочка Земли. Различают материковую кору (толщиной от 35…45 км под равнинами, до 70 км в области гор) и океаническую (5…10 км). В строении первой имеются три слоя: верхний осадочный, средний, называемый условно «гранитным», и нижний «базальтовый»; в океанической коре «гранитный» слой отсутствует, а осадочный имеет уменьшенную мощность. В переходной зоне от материка к океану развивается кора промежуточного типа (субматериковая или субокеаническая). Между земной корой и ядром Земли (от поверхности Мохоровичича до глубины 2900 км) располагается мантия Земли, составляющая 83 % объёма Земли. Предполагают, что она в основном сложена оливином; благодаря высокому давлению вещество мантии, по-видимому, находится в твердом кристаллическом состоянии, за исключением астеносферы, где оно, возможно, аморфно. Температура мантии 2000…2500 о С. Литосфера включает земную кору и верхнюю часть мантии.



Граница раздела между земной корой и мантией Земли выявлена югославским сейсмологом А. Мохоровичичем в 1909 году. Скорость продольных сейсмических волн при переходе через эту поверхность возрастает скачком с 6,7…7,6 до 7,9…8,2 км/с.

Согласно теории "плоскостной тек­тоники" (или «тектоники плит») канадских учёных Форте и Митровица, земная кора по всей толщине и даже несколько ниже поверхности Мохоровичича разделена тре­щинами на плоскости-платформы (тектонические литосферные плиты), которые несут на себе груз океанов и континентов. Выявлено 11 крупных плит (Африканская, Индийская, Северо-Американская, Южно-Американская, Антарктическая, Евразиатская, Тихоокеанская, Карибская, плита Кокос западнее Мексики, плита Наска западнее Южной Америки, Аравийская) и множество мелких. Плиты имеют разное расположение по высоте. Швы между ними (так называемые сейсми­ческие разломы) заполнены значительно менее прочным материалом, чем материал плит. Плиты как бы плавают в земной мантии и непрерывно сталкивают­ся одна с другой краями. Есть карта-схема, на которой показаны направления перемещений тектонических плит (условно относительно Африканской плиты).

По Н. Колдеру существуют три типа стыков между плитами:

Расщелина, образующаяся при отходе плит друг от друга (Северо-Американской от Евразиатской). Это приводит к ежегодному увеличению расстояния между Нью-Йорком и Лондоном на 1 см;

Жёлоб – океаническая впадина по границе плит при их сближении, когда одна из них изгибается и погружается под край другой. Так случилось 26 декабря 2004 года западнее острова Суматра при столкновении Индийской и Евразиатской плит;

Трансформный разлом – скольжение плит относительно друг друга (Тихоокеанской относительно Северо-Американской). Американцы грустно шутят, что Сан-Франциско и Лос-Анджелес рано или поздно соединятся, так как находятся на разных берегах сейсмического разлома Сен-Андреас (Сан-Франциско - на Северо-Американской плите, а узкий Калифорнийский участок вместе с Лос-Анджелесом – на Тихоокеанской) длиной около 900 км и движутся навстречу друг другу со скоростью 5 см/год. Когда в 1906 г. здесь прои­зошло землетрясение, то 350 км из указанных 900 сместились и зас­тыли со смещением сразу до 7 м. Есть фотография, на которой видно, как у одного калифорнийского фермера одна часть забора сместилась по линии разлома относительно другой. По предсказаниям некоторых сейсмологов в результате катастро­фического землетрясения полуостров Калифорния может оторваться от материка вдоль Калифорнийского залива и превратиться в остров или вообще уйти на дно океана.

Большинство сейсмологов связывают возникновение землетрясений с внезапным высвобождением энергии упругой деформации (теория упругого высвобождения). Согласно этой теории, в районе разлома происходят длительные и очень медленные деформации – тектоническое движение. Оно приводит к накоплению напряжений в материале плит. Напряжения растут-растут и в определённый момент времени достигают предельного для прочности пород значения. Происходит разрыв пород. Разрыв вызывает внезапное быстрое смещение плит – толчок, упругую отдачу, вследствие чего возникают сейсмические волны. Таким образом, длительные и очень медленные тектонические движения переходят при землетрясении в движения сейсмические. Они имеют большую скорость из-за быстрой (в течение 10…15 с) «разрядки» накопленной огромной энергии. Максимальная зафиксированная на Земле энергия землетрясения – 10 18 Дж.

Тектонические движения происходят на значительной длине стыка плит. Разрыв же пород и вызванные им сейсмические движения происходят на каком-то локальном участке стыка. Этот участок может располагаться на разной глубине от поверхности Земли. Указанный участок называют очагом или гипоцентральной областью землетрясения, а точку этой области, где начался разрыв – гипоцентром или фокусом.

Иногда не вся накопившаяся энергия «разряжается» сразу. Неосвободившаяся часть энергии вызывает в новых связях напряжения, которые через некоторое время достигают на отдельных участках предельного для прочности пород значения, вследствие чего возникает афтершок – новый разрыв и новый толчок, однако меньшей силы, чем в момент основного землетрясения.

Землетрясениям предшествуют более слабые толчки – форшоки. Их появление связано с достижением в массиве таких уровней напряжений, при которых происходят местные разрушения (в наиболее слабых участках породы), но основная трещина образоваться ещё не может.

Если очаг землетрясения располагается на глубине до 70 км, то такое землетрясение называют нормальным, при глубине более 300 км – глубокофокусным. При промежуточной глубине очага и землетрясения называют промежуточными. Глубокофокусные землетрясения редки, они происходят в области океанических впадин, отличаются большой величиной выделенной энергии и, следовательно, наибольшим эффектом проявления на поверхности Земли.

Эффект проявления землетрясения на поверхности Земли, а следовательно, и их разрушительный эффект зависят не только от величины энергии, выделяющейся при внезапном разрыве материала в очаге, но и от гипоцентрального расстояния. Оно определяется как гипотенуза прямоугольного треугольника, катетами которого являются эпицентральное расстояние (расстояние от точки на поверхности Земли, где определяется интенсивность землетрясения, до эпицентра – проекции гипоцентра на поверхность Земли) и глубина гипоцентра.

Если на поверхности Земли вокруг эпицентра найти точки, где землетрясение проявляется с одинаковой интенсивностью, и соединить их между собой линиями, то получатся замкнутые кривые – изосейты. Вблизи эпицентра форма изосейт в известной мере повторяет форму очага. По мере удаления от эпицентра интенсивность эффекта ослабевает, и закономерность этого ослабления зависит от энергии землетрясения, особенностей очага и среды прохождения сейсмических волн.

Во время землетрясений поверхность Земли испытывает вертикальные и горизонтальные колебания. Вертикальные колебания очень существенны в эпицентральной зоне, однако уже на сравнительно небольшом расстоянии от эпицентра их значение быстро падает, и здесь в основном приходится считаться с горизонтальными воздействиями. Так как случаи расположения эпицентра в черте или вблизи поселений редки, то до последнего времени при проектировании в основном учитывались только горизонтальные колебания. По мере увеличения плотности застройки опасность расположения эпицентров в черте населённых пунктов соответственно возрастает, и поэтому с вертикальными колебаниями приходится также считаться.

В зависимости от эффекта проявления землетрясения на поверхности Земли их классифицируют по интенсивности в баллах, которая определяется по различным шкалам. Всего таких шкал было предложено около 50 шкал. К числу одних из первых относятся шкалы Росси-Фореля (1883 г.) и Меркалли-Канкани-Зиберга (1917 г.). Последняя шкала и сейчас применяется в некоторых европейских странах. В США с 1931 г. применяют модифицированную 12- балльную шкалу Меркалли (кратко ММ). У японцев своя 7-балльная шкала.

У всех на слуху шкала Рихтера. Но она не имеет никакого отношения к классификации по интенсивности в баллах. Предложена она была в 1935 г. американским сейсмологом Ч. Рихтером и теоретически обоснована совместно с Б. Гутенбергом. Это шкала магнитуд – условной характеристики энергии деформаций, выделяемой очагом землетрясения. Магнитуду находят по формуле

где - максимальная амплитуда смещения в сейсмической волне, измеренная при рассматриваемом землетрясении на некотором удалении (км) от эпицентра, мкм (10 -6 м);

Максимальная амплитуда смещения в сейсмической волне, измеренная при некотором очень слабом («нулевом» землетрясении) на некотором удалении (км) от эпицентра, мкм (10 -6 м).

При использовании для определения амплитуд смещений поверхностных волн, фиксируемых станциями наблюдения, принимают

Эта формула даёт возможность по , измеренной всего одной станцией, найти величину , зная . Если, например, 0,1 м = 10 5 мкм и200 км, 2,3 , то

Шкалу Ч. Рихтера (классификацию землетрясений по магнитуде) можно представить в виде таблицы:

Таким образом, магнитуда лишь хорошо характеризует происшедшее явление в очаге землетрясения, но не даёт информации о разрушительном эффекте его на поверхности Земли. Это – «прерогатива» других, уже названных шкал. Поэтому заявление председателя Совмина СССР Н.И. Рыжкова после Спитакского землетрясения о том, что «сила землетрясения составила 10 баллов по шкале Рихтера » лишено смысла. Да, интенсивность землетрясения, действительно, была равна 10 баллам, но по шкале MSK-64.

Международная шкала Института Физики Земли им. О.Ю. Шмидта АН СССР MSK-64 была создана в рамках ЕЭС С.В. Медведевым (СССР), Шпонхоером (ГДР) и Карником (ЧССР). По первым буквам фамилий авторов она и названа – MSK. Год создания, понятно из названия, 1964. В 1981 г. шкалу модифицировали, и она стала называться MSK-64 * .

Шкала содержит инструментальную и описательную части.

Решающей для оценки интенсивности землетрясений является инструментальная часть. Она основана на показаниях сейсмометра – прибора, фиксирующего с помощью сферического упругого маятника максимальные относительные смещения в сейсмической волне. Период собственных колебаний маятника подобран так, чтобы он был примерно равен периоду собственных колебаний малоэтажных зданий – 0,25 с.

Классификация землетрясений согласно инструментальной части шкалы:

Из таблицы видно, что ускорение грунта при 9 баллах – 480 см/с 2 , что составляет почти половину = 9,81 м/с 2 . Каждому баллу соответствует увеличение ускорения грунта в два раза; при 10 баллах оно равнялось бы уже .

Описательная часть шкалы состоит из трёх разделов. В первом интенсивность классифицирована по степени повреждений зданий и сооружений, выполненных без антисейсмических мер. Во втором разделе описаны остаточные явления в грунтах, изменение режима грунтовых и подземных вод. Третий раздел назван «прочие признаки», в который входит, например, реакция людей на землетрясение.

Оценка повреждений дана для трёх типов зданий, возводимых без антисейсмических усилений:

Классификация степени повреждений:

Степень повреждения Наименование повреждения Характеристика повреждений
Лёгкие повреждения Небольшие трещины в стенах, откалывание небольших кусков штукатурки.
Умеренные повреждения Небольшие трещины в стенах, небольшие трещины в стыках между панелями, откалывание довольно больших кусков штукатурки; падение черепицы с крыш, трещины в дымовых трубах, падение частей дымовых труб (имеются в виду трубы зданий).
Тяжёлые повреждения Большие глубокие и сквозные трещины в стенах, значительные трещины в стыках между панелями, падение дымовых труб.
Разрушения Обрушение внутренних стен и стен заполнения каркаса, проломы в стенах, обрушение частей зданий, разрушение связей (коммуникаций) между отдельными частями здания.
Обвалы Полное разрушение здания.

При наличии в конструкциях зданий антисейсмических усилений, соответствующих интенсивности землетрясений, их повреждения должны быть не выше 2-й степени.

Повреждения зданий и сооружений, возведённых без антисейсмических мер:

Шкала, баллы Характеристики повреждений различных типов зданий
1-я степень в 50 % зданий типа А; 1-я степень в 5 % зданий типа Б; 2-я степень в 5 % зданий типа А.
1-я степень в 50 % зданий типа В; 2-я степень в 5 % зданий типа В; 2-я степень в 50 % зданий типа Б; 3-я степень в 5 % зданий типа Б; 3-я степень в 50 % зданий типа А; 4-я степень в 5 % зданий типа А. Трещины в каменных оградах.
2-я степень в 50 % зданий типа В; 3-я степень в 5 % зданий типа В; 3-я степень в 50 % зданий типа Б; 4-я степень в 5 % зданий типа Б; 4-я степень в 50 % зданий типа А; 5-я степень в 5 % зданий типа А Памятники и статуи сдвигаются, надгробные памятники опрокидываются. Каменные ограды разрушаются.
3-я степень в 50 % зданий типа В; 4-я степень в 5 % зданий типа В; 4-я степень в 50 % зданий типа Б; 5-я степень в 5 % зданий типа Б; 5-я степень в 75 % зданий типа А. Памятники и колонны опрокидываются.

Остаточные явления в грунтах, изменение режима грунтовых и подземных вод:

Шкала, баллы Характерные признаки
1-4 Нарушений нет.
Небольшие волны в проточных водоёмах.
В отдельных случаях – оползни, на сырых грунтах возможны видимые трещины шириной до 1 см; в горных районах – отдельные оползни, возможны изменения дебита источников и уровня вод в колодцах.
В отдельных случаях – оползни проезжих частей дорог на крутых склонах и трещины на дорогах. Нарушение стыков трубопроводов. В отдельных случаях – изменения дебита источников и уровня воды в колодцах. В немногих случаях возникают или пропадают существующие источники воды. Отдельные случаи оползней на песчаных и гравелистых берегах рек.
Небольшие оползни на крутых откосах выемок и насыпей дорог, трещины в грунтах достигают нескольких сантиметров. Возможно возникновение новых водоёмов. Во многих случаях изменяется дебит источников и уровень воды в колодцах. Иногда пересохшие колодцы наполняются водой или существующие иссякают.
Значительные повреждения берегов искусственных водоёмов, разрывы частей подземных трубопроводов. В отдельных случаях – искривление рельсов и повреждение проезжих частей дорог. На равнинах наводнения, часто заметны наносы песка и ила. Трещины в грунтах до 10 см, а по склонам и берегам – более 10 см. Кроме того, много тонких трещин в грунтах. Частые оползни и осыпание грунтов, обвалы горных пород.

Прочие признаки:

Шкала, баллы Характерные признаки
Людьми не ощущается.
Отмечается некоторыми очень чуткими людьми, находящимися в покое.
Отмечается немногими, очень лёгкое раскачивание висящих предметов.
Лёгкое раскачивание висящих предметов и неподвижных автомашин. Слабый звон посуды. Распознаётся всеми людьми внутри зданий.
Заметное раскачивание висящих предметов, останавливаются маятниковые часы. Опрокидывается неустойчивая посуда. Ощущается всеми людьми, все просыпаются. Животные беспокоятся.
Падают книги с полок, сдвигаются картины, лёгкая мебель. Падает посуда. Многие люди выбегают из помещений, передвижение людей неустойчивое.
Все признаки 6 баллов. Все люди выбегают из помещений, иногда выпрыгивают из окон. Передвигаться без опоры трудно.
Часть висячих ламп повреждается. Мебель сдвигается и часто опрокидывается. Лёгкие предметы подскакивают и падают. Люди с трудом удерживаются на ногах. Все выбегают из помещений.
Мебель опрокидывается и ломается. Большое беспокойство животных.

Соответствие между шкалами Ч. Рихтера и MSK-64 * (магнитудой землетрясения и его разрушительными последствиями на поверхности Земли) можно в первом приближении отобразить в следующем виде:

Ежегодно происходит от 1 до 10 млн. столкновений плит (землетрясений), многие из них человек даже не ощущает, последствия других сравнимы с ужасами войны. Статистика мировой сейсмичности за ХХ век показывает, что количество землетрясений с магнитудой 7 и выше колебалось от 8 в 1902 г. и 1920 г. до 39 в 1950 г. Среднее число землетрясений с магнитудой 7 и выше – 20 в год, с магнитудой 8 и выше – 2 в год.

Летопись землетрясений указывает на то, что географически они сосредоточены в основном по так называемым сейсмическим поясам, практически совпадающим с разломами и примыкающим к ним.

75 % землетрясений приходится на Тихоокеанский сейсмический пояс, охватывающий практически по периметру весь Тихий океан. Вблизи наших Дальневосточных границ он проходит через Японские и Курильские острова, остров Сахалин, Камчатский полуостров, Алеутские острова до залива Аляска и далее простирается вдоль всего западного побережья Северной и Южной Америки, включая Британскую Колумбию в Канаде, штаты Вашингтон, Орегон и Калифорния в США, Мексику, Гватемалу, Сальвадор, Никарагуа, Коста-Рику, Панаму, Колумбию, Эквадор, Перу и Чили. Чили и без того неудобная страна, протянувшаяся узкой полоской на 4300 км, так к тому же протянулась она вдоль разлома между плитой Наска и Южно-Американской плитой; и тип стыка здесь самый опасный – второй.

23 % землетрясений происходит в Альпийско-Гималайском (другое название – Средиземноморско-Трансазиатский) сейс­мическом поясе, к которому в частности относится Кавказ и ближай­ший к нему Анатолийский разлом. Аравийская плита, перемещающаяся в северо-восточном направлении, «таранит» Евразиатскую плиту. Сейсмологи регистрируют постепенную миграцию потенциальных эпицентров землетрясений с территории Турции в сторону Кавказа.

Есть теория, что предвестником землетрясений является увеличение напряженного состояние земной коры, которая, сжимаясь, как губка, выталкивает из себя воду. Гидрогео­логи при этом регистрируют повышение уровня грунтовых вод. Перед Спитакским землетрясением уровень грунтовых вод на Кубани и в Адыгее поднялся на 5-6 м и с тех пор практически сохранился; при­чину этого приписывали Краснодарскому водохранилищу, но сейсмоло­ги считают иначе.

Лишь около 2 % землетрясений происходит на остальной терри­тории Земли.

Самые сильные землетрясения с 1900 г.: Чили, 22 мая 1960 г. – магнитуда 9,5; полуостров Аляска, 28 марта 1964 г. - 9,2; у острова. Суматра, 26 декабря 2004 г. - 9,2, цунами; Алеутские острова, 9 марта 1957 г. – 9,1; Камчатский полуостров, 4 ноября 1952 г. – 9,0. В десятку сильнейших входят землетрясения также на Камчатском полуострове 3 февраля 1923 г. – 8,5 и на Курильских островах 13 октября 1963 г. – 8,5.

Ожидаемая для каждого района максимальная величина интенсивности называется сейсмичностью. Существует схема сейсмического районирования и список сейсмичности населённых пунктов России.

Мы с Вами живём в Краснодарском крае.

В 70-е годы большая его часть, согласно карте сейсмического районирования территории СССР по СНиП II-A.12-69, не относилась к зонам с высокой сейсмичностью, лишь узкая полоска побережья Чёрного моря от Туапсе до Адлера считались сейсмоопасной.

В 1982 году, согласно СНиП II-7-81, зона повышенной сейсмичности удлинилась за счёт включения в неё городов Геленджика, Новороссийска, Анапы, части Таманского полуострова; расширилась она и в глубь суши – до г. Абинска.

23 мая 1995 года замминистра Минстроя РФ С.М. Полтавцевым всем руководителям республик, главам администраций краёв и областей Северного Кавказа, НИИ, проектным и строительным организациям был направлен Список населённых пунктов Северного Кавказа с указанием принятой для них новой сейсмичности в баллах и повторяемости сейсмических воздействий. Этот Список был утверждён РАН 25 апреля 1995 года в соответствии с Временной схемой сейсмического районирования Северного Кавказа (ВССР-93), составленной в Институте Физики Земли по поручению правительства после катастрофического Спитакского землетрясения 7 декабря 1988 года.

Согласно ВССР-93, теперь уже большая часть территории Краснодарского края, за исключением северных его районов, попала в сейсмоактивную зону. Для Краснодара интенсивность землетрясений стала составлять 8 3 (индексы 1, 2 и 3 соответствовали средней повторяемости землетрясений один раз за 100, 1000 и 10000 лет или вероятности 0,5; 0,05; 0,005 в ближайшие 50 лет).

До сих пор существуют разные точки зрения о целесообразности или нецелесообразности столь резкого изменения оценки потенциальной сейсмической опасности в крае.

Интересен анализ карт, на которых показаны места 100 последних землетрясений на территории края с 1991 года (в среднем 8 землетрясений в год) и последних 50 землетрясений с 1998 года (также в среднем 8 землетрясений в год). Большинство землетрясений по-прежнему происходили в акватории Черного моря, но наблюдалось и их «углубление» на сушу. Три самых сильных землетрясения наблюдались в районе п. Лазаревского, на трассе Краснодар-Новороссийск и на границе Краснодарского и Ставропольского краёв.

В целом землетрясения в нашем регионе можно охарактеризовать как довольно частые, но не очень сильные. Удельная энергия их на единицу площади (в 10 10 Дж/км 2) составляет менее 0,1. Для сравнения: в Турции -1…2, в Закавказье – 0,1…0,5, на Камчатке и Курилах – 16, в Японии – 14…15,9.

С 1997 года интенсивность сейсмических воздействий в баллах для районов строительства стали принимать на основе комплекта карт общего сейсмического районирования территории РФ (ОСР-97), утверждённых РАН. Указанный комплект карт предусматривает осуществление антисейсмических мероприятий при строительстве объектов и отражает 10%- (карта А), 5%- (карта В) и 1%-ную (карта С) вероятность возможного превышения (или соответственно 90%-, 95%- и 99%-ную вероятность непревышения) в течение 50 лет указанных на картах значений сейсмической активности. Эти же оценки отражают 90%-ную вероятность непревышения значений интенсивности в течение 50 (карта А), 100 (карта В) и 500 (карта С) лет. Эти же оценки соответствуют повторяемости таких землетрясений в среднем один раз в 500 (карта А), 1000 (карта В) и 5000 (карта С) лет. Согласно ОСР-97, для Краснодара интенсивность сейсмических воздействий составляет 7, 8, 9.

Комплект карт ОСР-97 (А, В, С) позволяет оценивать на трёх уровнях степень сейсмической опасности и предусматривает осуществление антисейсмических мероприятий при строительстве объектов трёх категорий, учитывающих ответственность сооружений:

карта А – массовое строительство;

карты В и С – объекты повышенной ответственности и особо ответственные объекты.

Приведём выборку из списка населённых пунктов Краснодарского края, расположенных в сейсмических районах, с указанием расчётной сейсмической интенсивности в баллах шкалы MSK-64 * :

Названия населённых пунктов Карты ОСР-97
А В С
Абинск
Абрау-Дюрсо
Адлер
Анапа
Армавир
Ахтырский
Белореченск
Витязево
Выселки
Гайдук
Геленджик
Дагомыс
Джубга
Дивноморское
Динская
Ейск
Ильский
Кабардинка
Кореновск
Краснодар
Криница
Кропоткин
Курганинск
Кущёвская
Лабинск
Ладожская
Лазаревское
Ленинградская
Лоо
Магри
Мацеста
Мезмай
Мостовской
Нефтегорск
Новороссийск
Темрюк
Тимашевск
Туапсе
Хоста

Согласно ОСР-97, для г. Краснодара интенсивность сейсмических воздействий составляет 7, 8, 9. То есть произошло снижение сейсмичности на 1 балл по сравнению с ВССР-93. Интересно, что граница между 7- и 8-бальными зонами, как специально, «прогнулась» за г. Краснодар, за р. Кубань. Аналогично изогнулась граница и непосредственно у г. Сочи (8 баллов).

Указанная на картах и в списке населённых пунктов сейсмическая интенсивность относится к участкам с некоторыми средними горно-геологическими условиями (II категория грунтов по сейсмическим свойствам). При отличных от средних условиях сейсмичность конкретной площадки строительства уточняется на основании данных микрорайонирования. В одном и том же городе, но в разных его районах сейсмичность может быть существенно различной. При отсутствии материалов сейсмического микрорайонирования допускается упрощённое определение сейсмичности площадки по таблице СНиП II-7-81 * (вечномерзлые грунты опущены):

Категория грунта по сейсмичес- ким свойст- вам Грунты Сейсмичность пло- щадки строительства при сейсмичности района, баллы
I Скальные грунты всех видов невыветрелые и слабовыветрелые, крупнообломочные грунты плотные маловлажные из магматических пород, содержащие до 30 % песчано-глинистого заполнителя.
II Скальные грунты выветрелые и сильновыветрелые; крупнообломочные грунты, за исключением отнесённых к I категории; пески гравелистые, крупные и средней крупности плотные и средней плотности маловлажные и влажные, пески мелкие и пылеватые плотные и средней плотности маловлажные, глинистые грунты с показателем консистенции при коэффициенте пористости - для глин и суглинков и - для супесей.
III Пески рыхлые независимо от степени влажности и крупности; пески гравелистые крупные и средней крупности плотные и средней плотности водонасыщенные; пески мелкие и пылеватые плотные и средней плотности влажные и водонасыщенные; глинистые грунты с показателем консистенции при коэффициенте пористости - для глин и суглинков и - для супесей. > 9

Зона, где землетрясение вызывает значительные повреждения зданий и сооружений, называется мейзосейсмической или плейстосейстовой. Она ограничивается 6-балльной изосейстой. При интенсивности 6 баллов и меньшей повреждаемость обычных зданий и сооружений мала, и поэтому для таких условий проектирование осуществляют без учёта сейсмической опасности. Исключение составляют некоторые специальные производства, для которых при проектировании могут учитываться 6-балльные, а иногда и менее интенсивные землетрясения.

Проектирование зданий и сооружений с учётом требований антисейсмического строительства осуществляется для условий 7-, 8- и 9-балльной интенсивности.

Что же касается 10-балльных и более интенсивных землетрясений, то для таких случаев любые меры сейсмозащиты оказываются недостаточными.

Приведём статистику материальных убытков от землетрясений в зданиях и сооружениях, запроектированных и построенных без учёта и с учётом антисейсмических мероприятий:

Приведём статистику повреждений зданий разного типа:

Доли построек, повреждённых при землетрясениях

Предсказывание землетрясений – неблагодарное занятие.

В качестве поистине кровавого примера можно привести следующую историю.

Китайские учёные в 1975 г. предсказали время возникновения землетрясения в Ляо-Лини (бывшем Порт-Артуре). Действительно, землетрясение произошло в предсказанный срок, погибло всего 10 человек. В 1976 г. на международной конференции доклад китайцев по этому поводу вызвал фурор. И в этом же 1976 г. китайцы не смогли предсказать Таньшанского (не Тянь-Шаньского, как переврали журналисты, а именно Таньшанского - от названия крупного промышленного центра Таньшан с численностью населения 1,6 млн. чел.) землетрясения. Китайцы согласились с числом 250 тысяч жертв, однако по средним оценкам число погибших во время этого землетрясения составило 650 тысяч, а по пессимистическим оценкам – около 1 миллиона человек.

Предсказания интенсивности землетрясений тоже часто смешат бога.

В Спитаке, согласно карте СНиП II-7-81, не должно было произойти землетрясение интенсивностью выше 7 баллов, а «тряхнуло» с интенсивностью 9…10 баллов. В Газли тоже «ошиблись» на 2 балла. Такая же «ошибка» произошла в Нефтегорске на острове Сахалин, который был разрушен полностью.

Как обуздать эту природную стихию, как сделать здания и соо­ружения, размещающиеся практически на виброплатформах, любая из которых готова в любой момент «запуститься», сейсми­чески стойкими? Эти проблемы решает наука о сейсмостойком строи­тельстве, пожалуй, самая сложная для современной технической ци­вилизации; её сложность заключается в том, что мы должны "аван­сом" принять меры против события, разрушительную силу которого невозможно предсказать. Много землетрясений произошло, много зда­ний с самыми различными конструктивными схемами разрушилось, но многие здания и сооружения при этом смогли устоять. Накоплен бо­гатейший, большей частью печальный, буквально кровавый опыт. И многое из этого опыта вошло в СНиП II-7-81 * «Строительство в сейсмических районах».

Приведём выборки из СНиП, территориальных СН Краснодарского края СНКК 22-301-99 «Строительство в сейсмических районах Краснодарского края», дискутируемого в настоящее время проекта новых норм и других литературных источников, касающиеся зданий с несущими стенами из кирпича или каменной кладки.

Каменная кладка является неоднородным телом, состоящим из каменных материалов и швов, заполненных раствором. Введением в кладку арматуры получают армокаменные конструкции . Армирование может быть поперечное (сетки располагаются в горизонтальных швах), продольное (арматура располагается снаружи под слоем цементного раствора или в бороздах, оставляемых в кладке), армирование посредством включения в кладку железобетона (комплексные конструкции) и усиление посредством заключения кладки в железобетонную или металлическую обойму из уголков.

В качестве каменных материалов в условиях высокой сейсмичности применяют искусственные и природные материалы в виде кирпича, кам­ней, мелких и крупных блоков:

а) кирпич полнотелый или пустотелый с 13, 19, 28 и 32 от­верстиями диаметром до 14 мм марки не ниже 75 (марка характеризует предел прочности на сжатие); размер полнотелого кирпича 250х120х65 мм, пустотелого – 250х120х65(88) мм;

б) при расчетной сейсмичности 7 баллов допускаются пустотелые керамические камни с 7, 18, 21 и 28 отверстиями марки не ниже 75; размер камней 250х120х138 мм;

в) бетонные камни размером 390х90(190)х188 мм, сплошные и пустотелые блоки из бетона с объёмной массой не менее 1200 кг/м 3 марки 50 и выше;

г) камни или блоки из ракушечников, известняков марки не ме­нее 35, туфов, песчаников и других природных материалов марки 50 и выше.

Каменные материалы для кладки должны удовлетворять требованиям соответствующих ГОСТов.

Не допускается использование камней и блоков с крупными пус­тотами и тонкими стенками, кладки с засыпками и другие, наличие больших пустот в которых приводит к концентрации напряжений в стенках между пустотами.

Строительство жилых домов из сырцового кирпича, самана и грунтоблоков в зонах с высокой сейсмичностью запрещается. В сельской местности при сейсмичности до 8 баллов строительство одноэтажных зданий из этих материалов разрешается при условии усиления стен деревянным антисептирован­ным каркасом с диагональными связями, при этом не допускается устройство парапетов из сырцовых и грунтовых материалов.

Кладочный раствор обычно применяют простой (на вяжущем одного вида). Марка раствора характеризует его прочность на сжатие. Раствор должен удовлетворять требованиям ГОСТ 28013-98 «Растворы строительные. Общие технические условия».

Пределы прочности камня и раствора «диктуют» предел прочности кладки в целом. Существует формула проф. Л.И. Онищика для определения предела прочности всех видов кладок при кратковременном загружении . Предел длительного (неограниченного временем) сопротивления кладки составляет около (0,7…0,8).

Работают каменные и армокаменные конструкции хорошо, главным образом, на сжатие: центральное, внецентренное, косое внецентренное, местное (смятие). Гораздо хуже они воспринимают изгиб, центральное растяжение и срез. В СНиП II-21-81 «Каменные и армокаменные конструкции» приведены соответствующие методики расчёта конструкций по предельным состояниям первой и второй групп.

Здесь эти методики не рассматриваются. После знакомства с железобетонными конструкциями студенту по силам самостоятельно овладеть ими (при необходимости). В настоящем разделе курса излагаются лишь конструктивные анти­сейсмические мероприятия, которые обязательно должны выполняться при строительстве каменных зданий в зонах с высокой расчётной сейсмич­ностью.

Итак, сначала о каменных материалах.

На сцепление их с раствором в кладке влияют:

  • конструкция камней (о ней уже сказано);

· состояние их поверхности (камни перед укладкой необходимо тщательно очищать от налетов, полученных при транспортировке и хранении, а также налетов, связанных с недостатками технологии производства камней, от пыли, наледи; после перерыва в кладочных работах верхний ряд кладки тоже должен очищаться);

· способности всасывать воду (кирпич, камни из легких пород (< 1800 кг/м3), а также крупные блоки с целью уменьшения поглощения воды из раствора должны перед укладкой смачиваться. Однако степень увлажнения не должна быть чрезмерной, чтобы не получалось разжижение раствора, поскольку как обезвоживание, так и разжижение раствора снижают сцепление.

Строительная лаборатория должна определить оптимальное соотношение между величиной предварительного увлажнения камня и водосодержанием растворной смеси.

Исследования показывают, что пористые природные камни, а также сухой обожженный кирпич из лессовидных суглинков, обладающие высоким водопоглощением (до 12...14 %),необходимо погружать в воду не менее чем на 1 мин (при этом они увлажняются до 4...8 %). При подаче кирпича на рабочее место в контейнерах замачивание можно производить опусканием контейнера в воду на 1,5 мин и как можно быстрее укладывать в "дело", сокращая до минимума время пребывания на открытом воздухе. После перерыва в кладочных работах верхний ряд кладки тоже должен замачиваться.)

Теперь - о растворе.

Штучная ручная кладка должна вестись на смешанных цементных растворах марки не ниже 25 в летних условиях и не ниже 50 - в зимних. При возведении стен из вибрированных кирпичных или каменных панелей или блоков должны применяться растворы марки не ниже 50.

Для обеспечения хорошего сцепления камней с раствором в кладке последний должен обладать высокой адгезией (клеящей способностью) и обеспечивать полноту площади соприкосновения с камнем.

На величину нормального сцепления влияют следующие факторы:

те, что зависят от камней, мы уже перечислили (их конструкция, состояние поверхности, способность всасывать воду);

а вот те, что зависят от раствора. Это:

  • его состав;
  • предел прочности;
  • подвижность и водоудерживающая способность;
  • режим твердения (влажность и температура);
  • возраст.

В чисто цементно-песчаных растворах происходит большая усадка, сопровождающаяся частичным отрывом раствора от поверхности камня и тем самым снижающая эффект высокой клеящей способности таких растворов. По мере повышения содержания в цементно-известковых растворах извести (или глины) увеличивается его водоудерживающая способность и уменьшаются усадочные деформации в швах, но одновременно ухудшается клеящая способность раствора. Поэтому для обеспечения хорошего сцепления строительная лаборатория должна определить оптимальное содержание в растворе песка, цемента и пластификатора (глины или извести). В качестве специальных добавок, повышающих сцепление, рекомендуются различные полимерные составы: дивинилстирольный латекс СКС-65ГП(Б) по ТУ 38-103-41-76; сополимерный винилхлоридный латекс ВХВД-65 ПЦ по ТУ 6-01-2-467-76; поливинилацетатная эмульсия ПВА по ГОСТ 18992-73.

Полимеры вводятся в раствор в количестве 15 % от веса цемента в пересчете на сухой остаток полимера.

При расчётной сейсмичности 7 баллов специальные добавки допускается не применять.

Для приготовления раствора для сейсмостойкой кладки нельзя применять песок с повышенным содержанием глинистых и пылеватых частиц. Нельзя применять шлакопортландцемент и пуццолановый портландцемент. При выборе цементов для растворов необходимо учитывать влияние температуры воздуха на сроки его схватывания.

В журнале производства работ должны быть записаны следующие данные о камнях и растворе:

  • марка применяемых камней и раств

· состав раствора (по данным паспортов и накладных) и результаты его испытаний строительной лабораторией;

  • место и время приготовления раствора;
  • время доставки и состояние раствора после перевозки при
  • централизованном приготовлении и доставке раствора;
  • консистенция раствора при кладке стен;

· мероприятия, способствующие повышению прочности сцепления, осуществляемые при кладке стен (смачивание кирпича, очистка его от пыли, наледи, кладка "под залив" и др.);

  • уход за кладкой после возведения (полив, укрытие матами и др.);
  • температурно-влажностные условия при возведении и вызревании кладки.

Итак, мы рассмотрели исходные материалы для кладки - камни и раствор.

Теперь сформулируем требования к их совместной работе в кладке стен сейсмостойкого здания:

· кладка должна, как правило, быть однорядной (цепной). Допускается (лучше при расчётной сейсмичности не выше 7 баллов) многорядная кладка с повторением тычковых рядов не реже, чем через три ложковых;

· тычковые ряды, в том числе забутовочные, должны укладываться только из целого камня и кирпича;

· только из целого кирпича должна вестись кладка кирпичных столбов и простенков шириной 2,5 кирпича и менее, за исключением случаев, когда неполномерный кирпич нужен для перевязки швов кладки;

  • не разрешается выполнение кладки в пустошовку;

· горизонтальные, вертикальные, поперечные и продольные швы должны быть полностью заполнены раствором. Толщина горизонтальных швов должна быть не менее 10 и не более 15 мм, средняя в пределах этажа - 12 мм; вертикальных - не менее 8 и не более 15 мм, средняя - 10 мм;

· кладка должна выполняться на всю толщину стены в каждом ряду. При этом верстовые ряды должны укладываться способами "вприжим" или "вприсык с подрезкой" (способом "вприсык" не допускается). Для тщательного заполнения вертикальных и горизонтальных швов кладки рекомендуется выполнять "под залив" при подвижности раствора 14...15 см.

Разлив раствора по ряду ведут совком.

Во избежание потерь раствора кладку выполняют с применением нвентарных рамок, выступающих над отметкой ряда на высоту 1 см.

Разравнивание раствора производят с помощью рейки, в качестве направляющей для которой служит рамка. Скорость перемещения рейки при разравнивании раствора, разлитого по ряду, должна обеспечивать попадание его в вертикальные швы. Консистенция раствора контролируется каменщиком с помощью наклонной плоскости, расположенной к горизонту под углом примерно 22,50; смесь должна сливаться с этой плоскости. Укладывая кирпич, каменщик должен прижать его и пристукнуть, следя, чтобы расстояния для вертикальных швов не превышали 1 см. Всякие повреждения растворной постели в процессе укладки кирпича (выборка раствора на намазки на тычки, передвижение кирпича по стене) не допускаются.

При временной остановке производства работ не следует заливать раствором верхний ряд кладки. Продолжение работ, как уже отмечалось, необходимо начинать с полива водой поверхности кладки;

· вертикальные поверхности борозд и каналов для монолитных железобетонных включений (о них будет сказано ниже) должны выполняться с подрезкой раствора на 10...15 мм;

· кладка стен в местах их взаимного примыкания должна возводиться только одновременно;

· сопряжение тонких в 1/2 и 1 кирпич стен со стенами большей толщины при возведении их в разное время путем устройства пазов не допускается;

· временные (монтажные) разрывы в возводимой кладке должны оканчиваться только наклонной штрабой и располагаться вне мест конструктивного армирования стен (об армировании будет сказано ниже).

Выполненная таким образом (с учетом требований к камням, раствору и их совместной работе) кладка должна обрести необходимое для восприятия сейсмических воздействий нормальное сцепление (временное сопротивление осевому растяжению по неперевязанным швам). В зависимости от значения этой величины кладка подразделяется на кладку I-й категории с 180 кПа и кладку II-й категории с 180 кПа >120 кПа.

При невозможности получения на площадке строительства (в том числе на растворах с добавками) значения сцепления, равного или превышающего 120 кПа, применение кирпичной и каменной кладки не допускается. И только при расчётной сейсмичности 7 баллов возможно применение кладки из естественного камня при менее 120 кПа, но не менее 60 кПа. В этом случае высота здания ограничивается тремя этажами, ширина простенков принимается не менее 0,9 м, ширина проёмов не более 2 м и расстояние между осями стен - не более 12 м.

Значение определяют по результатам лабораторных испытаний, а в проектах указывается, как осуществить контроль за фактическим сцеплением на стройке.

Контроль прочности нормального сцепления раствора с кирпичом или камнем должен осуществляться в соответствии с ГОСТ 24992-81 "Конструкции каменные. Метод определения прочности сцепления в каменной кладке".

Участки стен для контроля выбирают по указанию представителя технического надзора. В каждом здании должно быть не менее одного участка на этаж с отрывом по 5 камней (кирпичей) на каждом участке.

Испытания проводят через 7 или 14 суток после окончания кладки.

На выбранном участке стены снимается верхний ряд кладки, затем вокруг испытываемого камня (кирпича) при помощи скребков, не допуская толчков и ударов, расчищают вертикальные швы, в которые заводятся захваты испытательной установки.

При испытании нагрузка должна возрастать непрерывно с постоянной скоростью 0,06 кг/см2 в секунду.

Предел прочности при осевом растяжении вычисляется с погрешностью 0,1 кг/см2 как среднее арифметическое значение результатов 5 испытаний. Средняя прочность нормального сцепления определяется по результатам всех испытаний в здании и должна составлять не менее 90 % требуемой по проекту. При этом последующее нарастание прочности нормального сцепления с 7 или 14 суток до 28 суток определяется с помощью поправочного коэффициента, учитывающего возраст кладки.

Одновременно с испытанием кладки определяют прочность раствора на сжатие, взятого из кладки в виде пластинок толщиной, равной толщине шва. Прочность раствора определяют испытанием на сжатие кубиков с ребрами 30...40 мм, изготовленных из двух пластинок, склеенных при помощи тонкого слоя гипсового теста 1..2 мм.

Прочность определяется как среднее арифметическое значение испытаний 5 образцов.

При производстве работ необходимо стремиться к тому, чтобы нормальное сцепление и прочность раствора на сжатие во всех стенах и особенно по высоте здания были одинаковыми. В противном случае наблюдаются различные деформации стен, сопровождающиеся горизонтальными и косыми трещинами в стенах.

По результатам контроля прочности нормального сцепления раствора с кирпичом или камнем составляется акт по специальной форме (ГОСТ 24992-81).

Итак, в сейсмостойком строительстве могут применяться кладки двух категорий. Кроме того, по сопротивляемости сейсмическим воздействиям кладка подразделяется на 4 типа:

1. Комплексная конструкция кладки.

2. Кладка с вертикальной и горизонтальной арматурой.

3. Кладка с горизонтальной арматурой.

4. Кладка с армированием только сопряжений стен.

Комплексная конструкция кладки осуществляется введением в тело кладки вертикальных железобетонных сердечников (в том числе в местах пересечения и сопряжения стен), заанкеренных в антисейсмических поясах и фундаментах.

Кирпичная (каменная) кладка в комплексных конструкциях должна выполняться на растворе марки не ниже 50.

Сердечники могут быть монолитными и сборными. Бетон монолитных железобетонных сердечников должен быть не ниже класса В10, сборных - В15.

Монолитные железобетонные сердечники должны устраиваться открытыми не менее чем с одной стороны для контроля качества бетонирования.

Сборные железобетонные сердечники имеют поверхность, рифленную с трех сторон, а с четвертой - незаглаженную бетонную фактуру; причем третья поверхность должна иметь рифленную форму, сдвинутую относительно рифления первых двух поверхностей так, что её вырезы попадают на выступы смежных граней.

Размеры сечения сердечников обычно не менее 250х250 мм.

Вспомните, что вертикальные поверхности каналов в кладке для монолитных сердечников должны выполняться с подрезкой раствора швов на 10...15 мм или даже выполняться со шпонками.

Сначала расставляют сердечники - обрамления проемов (монолитные - непосредственно у граней проемов, сборные - с отступлением на 1/2 кирпича от граней), а затем рядовые - симметрично относительно середины ширины стены или простенка.

Шаг сердечников должен быть не более восьми толщин стены и не превышать высоту этажа.

Монолитные сердечники-обрамления должны быть связаны с кладкой стен посредством стальных сеток из 3...4 гладких (класса А240) стержней диаметром 6 мм, перекрывающих сечение сердечника и запускаемых в кладку не менее чем на 700 мм в обе стороны от сердечника в горизонтальные швы через 9 рядов кирпича (700 мм) по высоте при расчётной сейсмичности 7-8 баллов и через 6 рядов кирпича (500 мм) при расчётной сейсмичности 9 баллов. Продольная арматура этих сеток должна быть надежно соединена хомутами.

Из монолитных рядовых сердечников в простенок выпускаются замкнутые хомуты из d 6 А-I: при отношении высоты простенка к его ширине более 1 (даже лучше - 0,7), т.е. когда простенок узок, хомуты выпускаются на всю ширину простенка в обе стороны от сердечника, при указанном отношении менее 1 (лучше - 0,7) - на расстояние не менее 500 мм в обе стороны от сердечника; шаг хомутов по высоте - 650 мм (через 8 рядов кирпича) при расчётной сейсмичности 7-8 баллов и 400 мм (через 5 рядов кирпича) при расчётной сейсмичности 9 баллов.

Продольное армирование сердечника - симметричное. Количество продольной арматуры - не менее 0,1 % площади сечения стены, приходящейся на один сердечник, в то же время количество арматуры не должно превышать 0,8 % площади сечения бетона сердечника. Диаметр арматуры - не менее 8 мм.

Для совместной работы сборных сердечников с кладкой в вырезах рифления в каждом ряду кладки защемляются скобки d 6 А240, заходящие в швы по обе стороны от сердечника на 60...80 мм. Поэтому горизонтальные швы должны совпадать с углублениями на двух противоположных гранях сердечника.

Различают стены комплексной конструкции, образующие и не образующие "четкий" каркас.

Нечеткий каркас из включений получается тогда, когда требуется усиление только части простенков. При этом включения на разных этажах могут располагаться по разному в плане.

6, 5, 4 при кладке I-й категории и

5, 4, 3 при кладке II-й категории.

Кроме максимальной этажности регламентируется и максимальная высота здания.

Максимальную разрешенную высоту здания легко запомнить так:

n х 3 м + 2 м (до 8 этажей) и

n х 3 м + 3 м (9 и более этажей), т.е. 6 эт. (20 м); 5 эт. (17 м); 4 эт. (14 м); 3 эт. (11 м).

Замечу, что за высоту здания принимается разность отметок низшего уровня отмостки или спланированной поверхности земли, примыкающей к зданию, и верха наружных стен.

Важно знать, что высота зданий больниц и школ при расчётной сейсмичности 8 и 9 баллов ограничивается тремя надземными этажами.

Вы можете спросить: если, например, при расчётной сейсмичности 8 баллов n max = 4,то при H эт max = 5 м максимальная высота здания должна быть 4х5 = 20 м, а я привожу 14 м.

Никакого противоречия здесь нет: требуется, чтобы в здании было не более 4 этажей, и чтобы одновременно высота здания не превышала 14 м (что возможно при высоте этажа в 4-этажном здании не более 14/4 = 3,5 м). Если же высота этажа превышает 3,5 м (например, достигает H эт max = 5 м), то таких этажей может быть только 14/5 = 2,8, т.е. 2. Таким образом, регламентируются одновременно три параметра - количество этажей, их высота и высота здания в целом.

В кирпичных и каменных зданиях кроме наружных продольных стен обязательно должно быть не менее одной внутренней продольной стены.

Расстояние между осями поперечных стен при расчётной сейсмичности 7, 8 и 9 баллов не должно превышать соответственно при кладке I-й категории 18,15 и 12 м, при кладке II-й категории - 15, 12 и 9 м. Расстояние между стенами комплексной конструкции (т.е. типа 1)может быть увеличено на 30 .

При проектировании комплексных конструкций с четким каркасом железобетонные сердечники и антисейсмические пояса рассчитываются и конструируются как рамные конструкции (колонны и ригели). Кирпичная кладка рассматривается как заполнение каркаса, участвующее в работе на горизонтальные воздействия. В этом случае пазы для бетонирования монолитных сердечников должны быть открытыми не менее чем с двух сторон.

О размерах сечения сердечников и расстояниях между ними (шаге) мы уже говорили. При шаге сердечников более 3 м, а также во всех случаях при толщине кладки заполнения более 18 см верхняя часть кладки должна быть соединена с антисейсмическим поясом выходящими из него коротышами диаметром 10 мм с шагом 1 м с запуском в кладку на глубину 40 см.

Количество этажей при такой комплексной конструкции стен принимают не более при расчётной сейсмичности 7, 8 и 9 баллов соответственно:

9, 7, 5 при кладке I-й категории и

7, 6, 4 при кладке II-й категории.

Кроме максимальной этажности регламентируется и максимальная высота здания:

9 эт. (30 м); 8 эт. (26 м); 7 эт. (23 м);

6 эт. (20 м); 5 эт. (17 м); 4 эт. (14 м).

Высота этажей при такой комплексной конструкции стен должна быть при расчётной сейсмичности 7, 8 и 9 баллов соответственно не больше 6, 5 и 4,5 м.

Здесь остаются справедливыми все наши рассуждения о "несоответствии" предельных значений количества этажей и высоты здания, которые мы вели о зданиях с комплексной конструкцией стен с "нечетко" выраженным каркасом: например, при расчётной сейсмичности 8 баллов n max = 6,

H эт max = 5 м максимальная высота здания должна быть 6х5 = 30 м, а Нормы ограничивают эту высоту 20 м, т.е. в 6-этажном здании высота этажа должна быть не более 20/6 = 3,3 м, а если высота этажа равна 5 м, то здание может быть только 4-этажным.

Расстояние между осями поперечных стен при расчётной сейсмичности 7, 8 и 9 баллов не должно превышать соответственно 18, 15 и 12 м.

Кладка с вертикальной и горизонтальной арматурой.

Вертикальная арматура принимается по расчету на сейсмические воздействия и устанавливается с шагом не более 1200 мм (через 4...4,5 кирпича).

Независимо от результатов расчета в стенах высотой более 12 м при расчётной сейсмичности 7 баллов, 9 м при расчётной сейсмичности 8 баллов и 6 м при расчётной сейсмичности 9 баллов вертикальное армирование должно иметь площадь не менее 0,1 % площади кладки.

Вертикальная арматура должна быть заанкерена в антисейсмических поясах и фундаментах.

Шаг горизонтальных сеток не более 600 мм (через 7 рядов кирпича).

Результаты поиска

Нашлось результатов: 254283 (0,71 сек )

Свободный доступ

Ограниченный доступ

Уточняется продление лицензии

1

Выявлены основные факторы, негативно влияющие на состояние здоровья преподавателей вузов ("вредные привычки", "низкая личная ответственность за состояние собственного здоровья", "высокая рабочая нагрузка", "низкая физическая активность", "высокий уровень стрессовых ситуаций"), которыми можно управлять, используя внутренние (личностные) и внешние (административные) ресурсы. Определены направления охраны здоровья преподавателей ("формирование здорового образа жизни", "совершенствование профилактики заболеваний", "совершенствование организации психологической помощи"), а также мероприятия, способствующие улучшению здоровья преподавателей вуза ("проведение мониторинга индивидуального здоровья сотрудника", "более углубленное обследование при проведении профосмотров" и "оснащение современной диагностической аппаратурой"). Управление здоровьем преподавателей возможно за счет совершенствования профилактической помощи и организации психологической службы в вузе, обеспечивающих формирование личной ответственности за свое здоровье и помощь в преодолении психологических проблем, связанных с профессиональной деятельностью.

рабочая нагрузка", "низкая физическая активность", "высокий уровень стрессовых ситуаций"), которыми <...> Лисицыным : высокий уровень (отсутствие заболеваний, отличное самочувствие - I группа здоровья, здоровые <...> Более высоким уровень здоровья ППС считали эксперты ведомственного вуза, что вполне объяснимо спецификой <...> Согласованность мнения экспертов по данному вопросу - от средней до высокой степени (W = 0,3-0,8; χ2 <...>

2

ДИФФЕРЕНЦИАЛЬНАЯ РЕНТА НА МЕЛИОРИРОВАННЫХ ЗЕМЛЯХ (НА ПРИМЕРЕ КОЛХОЗОВ ПОЛЕСЬЯ БССР) АВТОРЕФЕРАТ ДИС. ... КАНДИДАТА ЭКОНОМИЧЕСКИХ НАУК

В работе ставится задача - выяснить специфическую природу избыточного прибавочного продукта, получаемого на мелиорированных землях, предложить методику для его исчисления и определить величину этого продукта, рассмотреть вопросы взаимоотношений колхозов и государства в области распределения прибавочного продукта и предложить пути их совершенствования.

плодородия земли,-но и фактор;,способствующийпостроениюсоциалистического общества/ -," : : : ::\ : "Высокая <...> Хозяйства, ведущие производство на осу. шенных землях, получают высокие урожаи сельскохозяйствен­ ных <...> надлежащей заправки минеральными; удобрениями, новой техники", сортовых семян и т. д. не обеспе­ чат высоких <...> системы, помощь государ-, ства хозяйствам в момент освоения осушенных земель и т. д. Только обеспечивая высокие <...> использующие мелиорированные земли, смогут получать большие урожаи сельскохозяйственных куль­ тур и высокие

Предпросмотр: ДИФФЕРЕНЦИАЛЬНАЯ РЕНТА НА МЕЛИОРИРОВАННЫХ ЗЕМЛЯХ (НА ПРИМЕРЕ КОЛХОЗОВ ПОЛЕСЬЯ БССР).pdf (0,0 Мб)

3

Статья посвящена анализу образной системы пьесы А. Блока "Король на площади". Рассматриваются параллели между центральными образами драмы. Кроме этого, объясняется жанровое определение произведения: его лирические и собственно драматические элементы

"Высокая красавица в чёрных шелках" выбирает путь служения народу, и в этом смысле она становится

4

Статья посвящена анализу возможности участия граждан в оценке качества работы медицинских учреждений. Проанализированы нормативные основы для такого участия, критерии оценки деятельности медицинского персонала и функционирования медицинских учреждений. Сделан акцент на необходимости сочетания вертикальной и горизонтальной осей взаимодействия всех субъектов системы оказания медицинской помощи, а также реализации при этом принципов и правил биоэтики.

преподавателей вузов ("вредные привычки", "низкая личная ответственность за состояние собственного здоровья", "высокая <...> рабочая нагрузка", "низкая физическая активность", "высокий уровень стрессовых ситуаций"), которыми

5

АККЛИМАТИЗАЦИОННЫЕ СПОСОБНОСТИ СВЕТЛОГО АКВИТАНСКОГО СКОТА В БЕЛОРУССИИ АВТОРЕФЕРАТ ДИС. ... КАНДИДАТА СЕЛЬСКОХОЗЯЙСТВЕННЫХ НАУК

БЕЛОРУССКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ЖИВОТНОВОДСТВА

Целью исследования было изучение степени влияния новых условий существования на физиологические функции организма и хозяйственно-полезные признаки животных светлой аквитановой породы и определение из основании этого пригодности завезенных животных для разведения в условиях Белоруссии.

Для импортных животных светлой ахватенской породы в полу­ ченных от них" телят характерно Солее высокое <...> осенвгеа п е. риод, тогда как у герефордских сверстников данные показатели.. оставались на более высоком <...> различав между породами в сумме затрат,"а низкип выход телят в низкая энергия роста их обус­ ловили высокую <...> Большинство импортных телок в новых экологических условиях ". проявили высокую энергию роста и к первому <...> -позволило телятам, выращиваемым на подсосе, проявить характер­ ную для породы высокую энергии роста.

Предпросмотр: АККЛИМАТИЗАЦИОННЫЕ СПОСОБНОСТИ СВЕТЛОГО АКВИТАНСКОГО СКОТА В БЕЛОРУССИИ.pdf (0,0 Мб)

6

УСОВЕРШЕНСТВОВАНИЕ ТЕХНОЛОГИИ ПОЛУЧЕНИЯ ЗДОРОВОГО ИСХОДНОГО МАТЕРИАЛА ДЛЯ ПЕРВИЧНОГО СЕМЕНОВОДСТВА КАРТОФЕЛЯ АВТОРЕФЕРАТ ДИС. ... КАНДИДАТА СЕЛЬСКОХОЗЯЙСТВЕННЫХ НАУК

М.: МОСКОВСКАЯ ОРДЕНА ЛЕНИНА И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ ИМЕНИ К. А. ТИМИРЯЗЕВА

Цель и задачи исследований. Целью нашей работы было усовершенствование некоторых элементов технологии выращивания оздоровленного исходного материала для первичного семеноводства картофеля, главным образом оздоровления и ускоренного размножения.

Показана высокая эффективность метода "листовых черенков" отдельно и в сочетании с другими методами ускоренного <...> В результате исследования показана "высокая эффективность сочетания ингибитора вирусов ИГГ с термотерапией <...> культуры а"пяксов, позволяет увеличить размгр последних до Т,0 км и" при этом сохранить достаточно высокий <...> их размере (0,1-0,15, мм) очень вели­ ки случайные колебания выхода здоровнх регенерантов и довольно высок <...> В этот период обеспечивали высокую ин" . тенсивность освещения не менее 12.000 лк.

Предпросмотр: УСОВЕРШЕНСТВОВАНИЕ ТЕХНОЛОГИИ ПОЛУЧЕНИЯ ЗДОРОВОГО ИСХОДНОГО МАТЕРИАЛА ДЛЯ ПЕРВИЧНОГО СЕМЕНОВОДСТВА КАРТОФЕЛЯ.pdf (0,0 Мб)

7

ФОРМИРОВАНИЕ ПРИЗНАКОВ ШЕРСТНОЙ ПРОДУКТИВНОСТИ И СВОЙСТВ ШЕРСТИ ТУШИНСКИХ ОВЕЦ И ТОНКОРУННОХТУШИНСКИХ ПОМЕСЕЙ С НЕОДНОРОДНОЙ ШЕРСТЬЮ АВТОРЕФЕРАТ ДИС. ... КАНДИДАТА СЕЛЬСКОХОЗЯЙСТВЕННЫХ НАУК

ВСЕСОЮЗНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ЖИВОТ

Цель исследований: разработать предложения по повышению шерстной продуктивности, сохранению и улучшению количественных и качественных признаков и свойств тушинской шерсти при восстановлении тушинской породы из помесного поголовья, уточнить направления использования шерсти тушинских и помесных овец.

Вы­ явлены и четко определены качественные признаки и их по­ казатели, обусловливающие высокое качество <...> Взрослые овцы тушинской породы обладают высокой (для грубошерстных овец) шерст­ ной продуктивностью. <...> Для взрослых овец тушин­ ской породы характерна высокая средняя тонина и хорошая уравненность волокон <...> Содержание воска, в шерсти тушин­ ских овей сравнительно (для овец грубошерстных пород) не­ высокое . <...> Растя­ жимость пуховых волокон высокая , остевых - значительно меньшая.

Предпросмотр: ФОРМИРОВАНИЕ ПРИЗНАКОВ ШЕРСТНОЙ ПРОДУКТИВНОСТИ И СВОЙСТВ ШЕРСТИ ТУШИНСКИХ ОВЕЦ И ТОНКОРУННОХТУШИНСКИХ ПОМЕСЕЙ С НЕОДНОРОДНОЙ ШЕРСТЬЮ.pdf (0,0 Мб)

8

ПИТАНИЕ МОЛОДИ ОСНОВНЫХ ПРОМЫСЛОВЫХ РЫБ НА НЕРЕСТИЛИЩАХ СЕВЕРА АРАЛЬСКОГО МОРЯ АВТОРЕФЕРАТ ДИС. ... КАНДИДАТА БИОЛОГИЧЕСКИХ НАУК

АКАДЕМИЯ НАУК КАЗАХСКОЙ ССР ОБЪЕДИНЕННЫЙ СОВЕТ ИНСТИТУТОВ ЗООЛОГИИ И ЭКСПЕРИМЕНТАЛЬНОЙ БИОЛОГИИ

Цель наших исследований заключалась в том, чтобы изучить состояние основных нерестовых водоемов севера Аральского моря, дать количественную оценку питания молоди рыб в условиях сокращающегося стока рек, вскрыть характер пищевых взаимоотношений у молоди, а также выяснить роль фактора питания при низкой урожайности молоди.

Прозрачность ее весной довольно "высокая - 1,45-2,8 м. <...> Кислородный режим харак­ теризовался высоки ;" содержанием кислорода - 80,7-230% насыщения с некоторыми <...> В Куйлюсе весной также преобладали коловратки, с той лишь разницей, что они не достигали столь высокой <...> Молодь красно­ перки и атерпны обладает высокой пищевом пластичностью. <...> У молоди воблы п шемаи коэффициент сходства ПИШИ высок лишь у ЛИЧИНОК 6-11 мм.

Предпросмотр: ПИТАНИЕ МОЛОДИ ОСНОВНЫХ ПРОМЫСЛОВЫХ РЫБ НА НЕРЕСТИЛИЩАХ СЕВЕРА АРАЛЬСКОГО МОРЯ.pdf (0,0 Мб)

9

ЭФФЕКТИВНОСТЬ ИСПОЛЬЗОВАНИЯ БВД И ПРЕМИКСОВ ПРИ ВЫРАЩИВАНИИ РЕМОНТНЫХ СВИНОК НА КОРМАХ СОБСТВЕННОГО ПРОИЗВОДСТВА (НА ПРИМЕРЕ ХОЗЯЙСТВ ТАМБОВСКОЙ ОБЛАСТИ) АВТОРЕФЕРАТ ДИС. ... КАНДИДАТА СЕЛЬСКОХОЗЯЙСТВЕННЫХ НАУК

ВСЕСОЮЗНЫЙ ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ НАУЧН

Цель изучение кормовой ценности и эффективности использования БВД и премиксов при выращивании ремонтных свинок в основном на кормах собственного производства

. ;" высокие продуктивные и эксплутационные,;: "качества у.у.ремонтных:_ :\ V*, свинок могут быть <...> Лна.шспруя.да:.ьь.е. по. балансу-азе та, .следует отметить,чтобо­ лее высоким отложение-его было „ <...> \ь 2 более высокую дозу витамина Е. <...> Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» Солее высокий среднесуточный прирост был <...> Животные опытной группы отличались более высокими воспроиз­ водительными качествами.

Предпросмотр: ЭФФЕКТИВНОСТЬ ИСПОЛЬЗОВАНИЯ БВД И ПРЕМИКСОВ ПРИ ВЫРАЩИВАНИИ РЕМОНТНЫХ СВИНОК НА КОРМАХ СОБСТВЕННОГО ПРОИЗВОДСТВА (НА ПРИМЕРЕ ХОЗЯЙСТВ ТАМБОВСКОЙ ОБЛАСТИ).pdf (0,0 Мб)

10

№4 [Здравоохранение Российской Федерации, 2015]

Основан в 1957 г. Главный редактор Онищенко Геннадий Григорьевич - доктор медицинских наук, профессор, академик РАН, заслуженный врач России и Киргизии, Помощник Председателя Правительства РФ. Основные задачи журнала: информирование о теоретическом и научном обосновании мер, направленных на улучшение здоровья населения, демографической ситуации, охраны окружающей среды, деятельности системы здравоохранения, публикация материалов о законодательных и нормативных актах, касающихся совершенствования работы органов и учреждений здравоохранения, публикация информации о положительном опыте работы территориальных органов и учреждений здравоохранения, новых путях этой работы, представление конкретных данных о состоянии здоровья отдельных категорий населения, санитарной и эпидемиологической обстановки в различных регионах России. В соответствии с указанными задачами печатаются материалы о результатах реализации национальных проектов «Здоровье» и «Демография», о совершенствовании стратегии в области экономики и управления здравоохранением, о разработке и внедрении новых форм организации медико-санитарной помощи, медицинских технологий, по оценке и динамике состояния здоровья населения различных регионов Российской Федерации, о подготовке медицинских кадров и повышении их квалификации.

Высокие технологии в медицине. 2012; 11: 3-7. R E F E R E N C E S 1. <...> Наиболее высокие темпы прироста отмечены среди детей. <...> , 0,9- 0,99 - весьма высокие . <...> Среднегодовой темп прироста показателя наиболее высок среди детского населения (5,1%). <...> Наиболее высокий уровень первичной заболеваемости отмечен в детской популяции.

Предпросмотр: Здравоохранение Российской Федерации №4 2015.pdf (4,7 Мб)

11

ИЗУЧЕНИЕ УСТОЙЧИВОСТИ РАЗЛИЧНЫХ СОРТОВ ГОРОХА ПРОТИВ ПОВРЕЖДЕНИЯ ЗЕРНОВКОЙ И ВЛИЯНИЯ НА НЕЕ ПРЕПАРАТОВ ДДТ И ГХЦГ АВТОРЕФЕРАТ ДИС. ... КАНДИДАТА СЕЛЬСКОХОЗЯЙСТВЕННЫХ НАУК

ХАРЬКОВСКИЙ ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ СЕЛЬСКОХОЗЯЙСТВЕННЫЙ ИНСТИТУТ ИМЕНИ В. В. ДОКУЧАЕВА

В результате проводившейся работы были найдены устойчивые против повреждения зерновкой сорта гороха (о существовании подобных сортов в то время известно не было) и выяснены причины этого.

Высокая холодоустойчивость и 1короткий вегетационный период гороха позволяют получать на Кубани высокие <...> Исследования показали высокую эффективность препара­ та ГХЦГ при борьбе с нею. "" Результаты работы были <...> Под. влиянием высокой влажности под листовым покровом они «отклеиваются» и сбрасываютсяс поверхности <...> Количество погибших в зерне личинок у некоторых сортов достигает высокого процента. <...> Причиной более высокой устойчивости этих сортов"про­ тив повреждения зерновкой является то, что бобы

Предпросмотр: ИЗУЧЕНИЕ УСТОЙЧИВОСТИ РАЗЛИЧНЫХ СОРТОВ ГОРОХА ПРОТИВ ПОВРЕЖДЕНИЯ ЗЕРНОВКОЙ И ВЛИЯНИЯ НА НЕЕ ПРЕПАРАТОВ ДДТ И ГХЦГ.pdf (0,0 Мб)

12

СОВЕРШЕНСТВОВАНИЕ ТЕХНОЛОГИИ ВОЗДЕЛЫВАНИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ КУЛЬТУР В АДАПТИВНО- ЛАНДШАФТНОМ ЗЕМЛЕДЕЛИИ ЦЕНТРАЛЬНОГО ЧЕРНОЗЕМЬЯ РОССИИ АВТОРЕФЕРАТ ДИС. ... ДОКТОРА СЕЛЬСКОХОЗЯЙСТВЕННЫХ НАУК

ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ЗЕМЛЕДЕЛИЯ И ЗАЩИТЫ ПОЧВ ОТ ЭРОЗИИ

Цель и задачи исследований. Целью исследований была разработка научных и практических основ совершенствования технологий возделывания сельскохозяйственных культур, повышения уровня их адаптации к условиям агроландшафтов Центрального Черноземья. Для достижения поставленной цели решали следующие задачи: - провести агроэкологическую оценку эффективности адаптивно-ландшафтной системы земледелия с контурно-мелиоративной организацией территории в условиях эрозионно-опасных ландшафтов; - изучить влияние различных по интенсивности и характеру воздействия на почву приемов основной обработки в сочетании с разными системами удобрений в севооборотах на агрофизические свойства черноземных почв; - определить закономерности изменения показателей плодородия черноземных почв в зависимости от севооборотов, приемов основной обработки почвы и удобрений; - установить влияние основных технологических приемов и агротехнологий в целом на продуктивность севооборотов, величину и качество урожая сельскохозяйственных культур; - разработать основные параметры моделей плодородия черноземных почв агроландшафтов: Центрального Черноземья; - дать агротехническую, экономическую и биоэнергетическую оценку эффективности систем земледелия и агротехнологий; - разработать практические предложения для АПК Центрального Черноземья по совершенствованию технологий возделывания озимой пшеницы, сахарной свеклы, кукурузы на зерно и других сельскохозяйственных культур.

В Центральном Черноземье России сформировалась крупная продовольственная инфраструктура, обладающая высоким <...> -х. культур с высоким уровнем адаптации к ландшафтным условиям с учетом специализации и интенсификации <...> Из изучаемых приемов основной обработки наиболее высокая продуктивность пашни достигается при вспашке <...> Характерно, что эффект механических обработок почвы заметно снижается на фоне внесения более.высоких <...> В наших исследованиях высокий эффект обеспечило применение кинмикса (94,5 %).

Предпросмотр: СОВЕРШЕНСТВОВАНИЕ ТЕХНОЛОГИИ ВОЗДЕЛЫВАНИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ КУЛЬТУР В АДАПТИВНО- ЛАНДШАФТНОМ ЗЕМЛЕДЕЛИИ ЦЕНТРАЛЬНОГО ЧЕРНОЗЕМЬЯ РОССИИ.pdf (0,0 Мб)

13

ПРОДУКТИВНОСТЬ И КАЧЕСТВО ЯГОД ЧЕРНОЙ СМОРОДИНЫ В ЗАВИСИМОСТИ ОТ СОРТА И ВНЕКОРНЕВОЙ ПОДКОРМКИ МИКРОЭЛЕМЕНТАМИ В УСЛОВИЯХ ЗАПАДНОЙ ЛЕСОСТЕПИ УССР АВТОРЕФЕРАТ ДИС. ... КАНДИДАТА СЕЛЬСКОХОЗЯЙСТВЕННЫХ НАУК

УКРАИНСКАЯ ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ

Цель и задачи исследований. В задачу наших исследований входило: изучить основные агробиологические особенности 26 сортов черной смородины, некоторые вопросы ее размножения, продуктивности и формирования качества ягод; установить влияние внекорневых подкормок микроэлементами на продуктивность, качество и химический состав ягод черной смородины. С этой целью исследовалась роль сорта и влияние микроэлементов на содержание в ягодах сухих, пектиновых, дубильных и красящих веществ.

В результате исследований выявлены лучшие сорта черной смо­ родины характеризующиеся высокой урожайностью <...> Сорту и агротехническим приемам выращивания высоких уро­ жаев ягодных культур отводится немаловажное <...> Исследуемые; сорта в наших условиях характеризуются высокой зимостойкостью \ и зимостойкостью. <...> Самый высокий урожай от большинства сортов был получен в 1968 году, самый низкий - в 1969 году. <...>Высоким содержанием растворимых су.

Предпросмотр: ПРОДУКТИВНОСТЬ И КАЧЕСТВО ЯГОД ЧЕРНОЙ СМОРОДИНЫ В ЗАВИСИМОСТИ ОТ СОРТА И ВНЕКОРНЕВОЙ ПОДКОРМКИ МИКРОЭЛЕМЕНТАМИ В УСЛОВИЯХ ЗАПАДНОЙ ЛЕСОСТЕПИ УССР.pdf (0,0 Мб)

14

Психологические резервы инженерной подготовки

М.: ПРОМЕДИА

Опыт показал, что в ста­ росты следует рекомендовать тех, кто имеет высокие показатели по тестам ПЗ, <...> Налицо потеря в лице этих студентов тех, кто мог бн выйти на более высокий уровень. <...> По второму критерию командиром назначали энергичного, направленного на себя, с высокой самооценкой. <...> конечно, высокий уро­ вень организации интеллектуальных процессов. <...> Организатор дол­ жен иметь высокое , скоростное качество мышления.

Предпросмотр: Психологические резервы инженерной подготовки.pdf (0,4 Мб)

15

ЭРОЗИЯ ПОЧВ И БОРЬБА С НЕЙ ВО ВЛАЖНЫХ И СУХИХ СУБТРОПИКАХ СССР (НА ПРИМЕРЕ ЧЕРНОМОРСКОГО ПОБЕРЕЖЬЯ КРАСНОДАРСКОГО КРАЯ И ТАДЖИКИСТАНА) АВТОРЕФЕРАТ ДИС. ... ДОКТОРА СЕЛЬСКОХОЗЯЙСТВЕННЫХ НАУК

М.: МОСКОВСКАЯ ОРДЕНА ЛЕНИНА И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ ИМЕНИ К. А. ТИМИРЯЗЕВА

Основной задачей настоящей; работы являлось: 1) исследовать динамику стока, и. смыва, в зависимости от различных природных и хозяйственных условии и показать, насколько и как одни из них могут усиливать, а другие тормозить и приостанавливать процессы горной, эрозии; 2) выявить специфические особенности этих процессов в зональном разрезе - в двух резко противоположных по увлажнению субтропических областях; 3) на основании проведенных исследований данных передового опыта и литературных источников научно обосновать и наметить основные принципы и пути борьбы с горной эрозией.

Г.Виленскому идет от 3 до 5 литров во-" ды), высокую полевую влагремкость (35-15%) и довольно высокую <...> коричневые карбонатные почвы Таджикистана, наоборот, имеют низкое водопоглощенне сверху, и более высокое <...> Площади с высокой водопро­ ницаемостью (>2,5 мм/мин) на побер"ежье занимают.около Copyright ОАО «ЦКБ <...> Коэффициент стока талых снеговых вод " .я высоких предгорьях колеблется по годам в пределах 10- 38%. <...> Дается "высокая оценка фитом"елиорациям в "горах, осуществляемым с помощью древесной, кустарнико­ вой

Предпросмотр: ЭРОЗИЯ ПОЧВ И БОРЬБА С НЕЙ ВО ВЛАЖНЫХ И СУХИХ СУБТРОПИКАХ СССР (НА ПРИМЕРЕ ЧЕРНОМОРСКОГО ПОБЕРЕЖЬЯ КРАСНОДАРСКОГО КРАЯ И ТАДЖИКИСТАНА).pdf (0,0 Мб)

16

Инновационные технологии на основе прессования [учеб. пособие]

Издательство СГАУ

Инновационные технологии на основе прессования. Используемые программы: Adobe Acrobat. Труды сотрудников СГАУ (электрон. версия)

Вот это и есть сбывшаяся "высокая фантазия", начавшаяся с углубленной мысли студента Р. <...> Но некоторые проявления в виде отдельных аномально высоких свойств обнаруживаются. <...> Повышая скорость вращения ω , можно добиться высокой скорости истечения Vист. <...> Производительность процесса высока и достигает 500 кг/час. <...> Совместно с экстролингсекцией – АБП заменяет пресс высокой производительности.

Предпросмотр: Инновационные технологии на основе прессования.pdf (0,2 Мб)

17

Проект мероприятий по совершенствованию организации предоставления дополнительных услуг (на примере гостиницы Марриотт Грандъ Отель)

Проверено через систему поиска текстовых заимствований

А для достижения максимально высоких показателей необходимо разработать проект мероприятий по совершенствованию <...>Высокие требования к руководителю структурных подразделений 2. <...> , соответствием высоким требованиям стандартов гостиницы. <...> Самый высокий балл – 4. <...> Возможность получать высокую зарплату – этот фактор составил всего 19%.

Предпросмотр: Проект мероприятий по совершенствованию организации предоставления дополнительных услуг (на примере гостиницы Марриотт Грандъ Отель).pdf (0,5 Мб)

18

Эксплуатация и диагностирование технических и программных средств информационных систем учеб. пособие для обучающихся по образоват. программам высш. образования по направлениям подготовки 09.04.02 и 09.03.02 Информ. системы и технологии

Учебное пособие предназначено для ознакомления с российским рынком диагностических программ, содержат краткое описание специальных средств по диагностике и оптимизации технических и программных средств информационных систем и технологию работы с некоторыми из них.

такого класса осложнен целым рядом причин, наиболее важными из которых представляются следующие : а) высокая <...> шин на больших временных интервалах, чтобы можно было зафиксировать редкие и однократные события; е) высокое <...> План электропитания с высокой производительностью увеличивает быстродействие и скорость отклика системы <...> Выбрать «Высокая производительность». <...> Поэтому, следует использовать программу CCleaner всем, кто желает поддерживать высокую производительность

Предпросмотр: Эксплуатация и диагностирование технических и программных средств информационных систем.pdf (0,6 Мб)

19

Произведение своеобразного жанра. Это философская сатира на послесталинское общество, прежде всего на правящий коммунистический класс

М е ж д у высокими поCopyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» 50 Г Р А Н И № 52 ленницами <...> каким он б ы л до обработки партийными клещами, и каким сей­ час снова стал в свой предтертньтй час - высоким <...> Они высоко сияют в зеленом полумраке, как да­ л е к и е солнца, и мне кажется, что моя постель удалена <...> За окнами зе­ ленела густая поросль молодого парка, "высокая чугунная ограда чернела вдали. <...> Ее высокая грудь в красной шелковой коф­ точке вздрагивала, как знамя на ветру: - И это говоришь ты,

20

Рассматриваются возможные подходы к долгосрочному прогнозу сейсмической опасности в связи с практической потребностью обоснования безопасности геологической изоляции долгоживущих радиоактивных отходов. Необходимый период прогноза существенно превышает тот, который отражен в комплекте карт общего сейсмического районирования территории Российской Федерации (ОСР-97). Первое в РФ геологическое хранилище планируется создать в Нижнеканском гранитном массиве в Красноярском крае. Этот район является внутриплитной территорией и при этом отличается сравнительно высокой сейсмичностью. Статья суммирует анализ известных эмпирических обобщений и теоретических положений, лежащих в основе прогноза сейсмической опасности. Реальные сейсмические события постоянно нарушают прогнозные оценки даже на сравнительно коротких отрезках времени. Эти и другие аргументы свидетельствуют о том, что гипотеза о стационарности сейсмического режима, являющаяся сегодня основой долгосрочного прогноза, имеет ограниченную и неопределенную во времени применимость. Прогноз внутриплитных землетрясений особенно неопределенен из-за неясности причин, формирующих тектонические напряжения в таких районах. Короткий горизонт прогноза, основанного на статистических методах, можно связать с нелинейностью сейсмогеодинамических процессов. В качестве научной основы долгосрочного прогноза сейсмической опасности в районах, выбранных для геологических хранилищ долгоживущих радиоактивных отходов, предлагается использовать фундаментальные закономерности геотектонических процессов. Эти процессы можно отразить в моделях миграции сейсмоактивных границ литосферных плит и возникновения сейсмической активности во внутриплитных областях.

Этот район является внутриплитной территорией и при этом отличается сравнительно высокой сейсмичностью <...> Это несколько снижает потенциальную опасность высокой сейсмичности для геологических хранилищ. <...> , для всех без исключения регионов графики среднегодовой скорости потока событий указывают на более высокую <...> Время существования поясов высокой сейсмичности вдоль границ тектонических плит и, соответственно, областей <...> Район относится к Альпийско-Гималайскому поясу высокой сейсмичности и приурочен к зоне 7-балльной (или

21

Дизайнеры России, США, Японии и Германии XX века учеб. пособие

Содержит теоретический материал по направлениям развития моды и дизайна ХХ века. Особое внимание уделено ведущим дизайнерам России, США, Японии и Германии.

Они прекрасно смотрятся с обувью на высоком каблуке. <...> "Высокая мода ", г.Калининград Гран-при. 1999 г. <...> Я – гибридный продукт, обладающий высокой чувствительностью американца. <...> В своем проекте «а-рос» Мияке поднял этот диалог на недосягаемо высокий уровень. <...> Твердил, что ненавидит все эти приталенные силуэты, осиные талии, высокие каблуки и прочее.

Предпросмотр: Дизайнеры России, США, Японии и Германии XX века.pdf (0,9 Мб)

22

Обсуждаются перспективы исследований, которые открывает гипотеза о причинной связи между магматизмом и сейсмичностью на Тянь-Шане. Гипотеза приводит к новому взгляду на причины глобальных явлений и развитие Земли в целом

<...> <...>Сейсмичность Земли. <...> <...>

23

РАСЧЕТНО-ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ГРУНТОАРМИРОВАННЫХ ПОДПОРНЫХ СТЕН ДЛЯ ТРАНСПОРТНЫХ СИСТЕМ В УСЛОВИЯХ СЕЙСМИЧНОСТИ [Электронный ресурс] / Кашарина, Кашарин // Известия высших учебных заведений. Северо-Кавказский регион. Технические науки.- 2016 .- №3 .- С. 88-95 .- Режим доступа: https://сайт/efd/520365

Рассмотрены вопросы строительства транспортных систем в условиях сейсмичности. Приведены технические решения грунтоармированных конструкций по обеспечению устойчивости транспортных систем при освоении районов Кавказа, Сибири и Дальнего Востока с высокой сейсмичностью. Приводятся результаты экспериментальных исследований и численное моделирование, а также эмпирические зависимости для определения параметров армирования земляного полотна автомобильных и железнодорожных путей сообщения

E-mail: [email protected] Рассмотрены вопросы строительства транспортных систем в условиях сейсмичности <...> обеспечению устойчивости транспортных систем при освоении районов Кавказа, Сибири и Дальнего Востока с высокой <...>сейсмичностью . <...> Кавказа, Дальнего Востока, Сибири необходимо учитывать сложные природноклиматические условия, связанные с высокой <...>сейсмичностью региона .

24

Керамика для технологов учеб. пособие

На базе современных достижений математики, физики и химии изложены новейшие подходы к технологии керамики. Технология рассматривается как последовательность неравновесных процессов, в этой связи показана значительная роль синергетики. Изложение теоретических вопросов иллюстрируется конкретными примерами при производстве различных керамических материалов.

характеристик (прочности, твердости, модуля Юнга), а также высокими температурами плавления. <...> Подобный материал должен отличаться высокой прочностью при сравнительно невысокой плотности. <...> Термин "каолин" является искажением китайского слова "куалинг", что означает "высокая гора". <...> При более низких температурах такая миграция затруднена из-за высокой вязкости связанной воды. <...> В случаях более высокого содержания связанной воды такая закономерность уже не наблюдается.

Предпросмотр: Керамика для технологов. Учебное пособие.pdf (0,2 Мб)

25

Освещены природные и геотехнические условия создаваемых в различных частях Сибири магистральных трубопроводов, которые условно могут быть поделены на две группы. К первой группе относится построенный и уже работающий магистральный нефтепровод Восточная Сибирь - Тихий океан, а ко второй группе - две проектируемые газотранспортные системы в Западной и Восточной Сибири. В августе 2015 года принято принципиальное решение о создании третьей ГТС по поставкам природного топлива в КНР. Целью статьи является анализ состояния и масштабов преобразования природной среды в районах транспортировки углеводородов на объектах разных стадий освоения и перспективы для каждого

уникальным с точки зрения обеспечения надежности объекта, достигаемой за счет использования труб с высоким <...> Это позволяет предварительно учитывать опасность сложной ландшафтной структуры с высокой сейсмичностью <...> В первую очередь опасность представляют высокая сейсмичность и динамичность мерзлотной обстановки, обусловленная <...>сейсмичность и т. д. <...>сейсмичностью и динамичностью мерзлотной обстановки.

26

№6 [Вулканология и сейсмология, 2017]

В журнале публикуются статьи, содержащие результаты теоретических и экспериментальных работ по следующим вопросам: современная наземная и подводная вулканическая деятельность, продукты вулканических извержений, строение вулканов и их корней. Журнал «Вулканология и сейсмология» освещает темы: неоген-четвертичный вулканизм, эволюция вулканизма в истории Земли; петрология изверженных пород, происхождение магм; геохимия вулканических, поствулканических процессов и связанное с ними минерало- и рудообразование; геотермия и гидротермальные системы вулканических областей; сейсмологические наблюдения, сейсмичность, физика землетрясений, современные движения, сейсмический прогноз. Публикуются также обзорные статьи, сообщения, рецензии, хроника событий. Журнал «Вулканология и сейсмология» рассчитан на вулканологов, сейсмологов, геологов, геофизиков, геохимиков и читателей прочих специальностей, интересующихся проблемами вулканизма и сейсмичности.

К переносу критериев высокой сейсмичности горного пояса Анд на Камчатку // Известия АН СССР. <...> О критериях высокой сейсмичности // Докл. АН СССР. 1972. Т. 202. № 6. С. 1317–1320. Горшков А.И. <...> о нем как о вспышке сейсмичности . <...> Толудская вспышка сейсмичности . <...> Аномально высокая сейсмичность региона обусловлена наложением (взаимными пересечениями) разнотипных зон

Предпросмотр: Вулканология и сейсмология №6 2017.pdf (0,1 Мб)

27

Педагогический процесс в высшей школе учеб. пособие

Учебное пособие разработано с учетом требований к подготовке специалистов высокой квалификации и призвано способствовать осмыслению ориентиров и главных направлений психолого-педагогической деятельности в высшей школе для преподавателей, магистрантов, аспирантов.

Второй тип – (45%) – достаточно высокий уровень продуктивности. <...> Е.В.Бондаревская выделяет высокий уровень педагогической культуры и «массовый». <...> Я был о вас гораздо более высокого мнения»). <...> Самый низкий уровень примитивный, самый высокий духовный. <...>Высокий уровень общения предполагает общение на основе схемы "субъектсубъект".

Предпросмотр: Педагогический процесс в высшей школе.pdf (0,1 Мб)

28

Группа континентальных окраин (переходных зон) островодужного и альтернативного типа по всем параметрам принципиально отличается от континентальных окраин рифтогенной группы. Основными геоморфологическими и тектоническими элементами здесь являются классическая, квази, шовно-глыбовая и редуцированная островодужные системы (ОДС). Они распространены в Тихом, Индийском и Атлантическом океанах как по периферии, так и в открытом океане. Орографические, геоморфологические и тектонические особенности строения таких ОДС положены в основу их классификации

сейсмичностью (Espinosa et al., 1981). <...>сейсмичность , а сейсмофокальная поверхность наклонена под островные линии, навстречу сейсмофокальной <...>сейсмичностью и присутствием многих отмерших и действующих вулканов. <...>сейсмичностью . <...> Южно-Сандвичева ОДС отличается высокой сейсмичностью и активными тектоническими подвижками.

29

Развитие лидерских качеств в процессе профессиональной подготовки: психолого-акмеологический аспект монография

Рассмотрены теоретические аспекты и практическое состояние проблемы лидерства в профессиональной деятельности руководителя. Определена роль развития лидерских качеств, оказывающих влияние на формирование всего комплекса профессионально важных характеристик управленца. Изучены особенности развития лидерских качеств в процессе профессионального обучения и психолого-акмеологические условия их реализации в подготовке студентов к управленческой деятельности.

Требовательность к другим высокая . Отношение к критике отрицательное. <...> Третий стиль лидерства "участвовать" характеризуется умеренно высокой степенью зрелости. <...> Четвертый стиль лидерства "делегировать" предполагает наличие высокой степени зрелости. <...> Следовательно, руководителю необходимо высокое коммуникативное искусство. <...> Самый высокий коэффициент корреляции (0,869) выявлен между параметрами 17 и 11.

Предпросмотр: Развитие лидерских качеств в процессе профессиональной подготовки психолого-акмеологический аспект.pdf (0,2 Мб)

30

Континентальная окраина (переходная зона) характеризуется сложной структурой, в которой главную роль играют островодужные системы (ОДС). Последние расположены между блоками литосферы с корой континентального или субконтинентального типа и утолщенной зрелой корой океанического или субокеанического происхождения. Блоками-глыбами являются о. Новая Гвинея, Адмиралтейско-Новоирландское плато, основания Фиджийских бассейнов, часть впадины Соломонова моря, архипелаг Тонга, Новая Зеландия и др. К блокам с корой океанического типа относятся структуры, входящие в ОДС. Простирания островных дуг повторяют абрисы краев блоков-глыб. Сейсмофокальные поверхности наклонены в разные стороны, а некоторые из них являются вертикальными. ОДС как бы выжимаются снизу вверх от основания литосферы к дневной поверхности. Поэтому данная группа ОДС отнесена к шовно-глыбовому типу

Структуры Новогвинейской ОДС характеризуются достаточно высокой сейсмичностью . <...> Исключительно высокая сейсмичность наблюдается на о. Новая Британия. <...>Сейсмичность ОДС Соломонова архипелага исключительно высокая и проявляется в границах сравнительно узкой <...>Сейсмичность Новогебридской ОДС очень высокая . <...>Сейсмичность ОДС Тонга-Кермадек исключительно высокая , особенно в ее северной половине.

31

Строительство Керченского моста, уже однажды возведенного в годы Великой Отечественной войны по временной схеме героическими усилиями бойцов Красной Армии и мостостроителей и разрушенного 70 лет назад катастрофическим ледоходом из Азовского моря, становится реальностью. Новый мост будет соответствовать современным потребностям и уровню развития мирового и российского мостостроения. В процессе предпроектных проработок и составления ТЭО были рассмотрены десятки вариантов, и сегодня проектные решения предопределены проектной документацией на стадии «Проект»

Другая проблема, однако решенная, ― высокая сейсмичность района (до 10 баллов, что исключает строительство <...> микросейсмического зондирования детально изучить строение и состав пород разломов, и на этой основе понизить сейсмичность <...> ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» TRANSPORT CONSTRUCTION № 10/2015 31 ПАМЯТИ ТОВАРИЩА сейсмичность <...> Многогранная трудовая деятельность Александра Петровича получила высокую оценку.

32

Освещена сложная природная обстановка зоны влияния нефтепровода ВСТО, характеризующаяся высокой сейсмичностью и сложным характером развития мерзлых пород, а также геотехнические особенности комплекса, созданного и эксплуатируемого с использованием новейших технологий. Показано, что различные проблемы, связанные со сложной инженерно-геологической обстановкой трассы нефтепровода и уникальностью перехода трубы через одну из крупнейших рек Сибири Лену, к стадии эксплуатации успешно решены. Отмечена необходимость обязательного для всех стадий геотехнического мониторинга

реальность) Освещена сложная природная обстановка зоны влияния нефтепровода ВСТО, характеризующаяся высокой <...>сейсмичностью и сложным характером развития мерзлых пород, а также геотехнические особенности комплекса <...> В первую очередь это высокие сейсмичность и динамичность мерзлотной обстановки, обусловленные широким <...> На участках повышенной сейсмичности в частности были проведены специальные комплексные работы по ее оценке <...> Опыт длительной эксплуатации перехода свидетельствует о высокой степени надежности объекта, не вызвавшего

33

Многочисленные следы палеосейсмических событий (сейсмиты) установлены в мезозойско-кайнозойских морских осадочных толщах Северного Кавказа. Наиболее отчетливо эти следы запечатлены в терригенных песчано-глинистых отложениях среднего миоцена. Воздействие сейсмических ударов на относительно слаболитифицированные отложения приводило к нарушению первичной осадочной структуры, разжижению песчаного материала и появлению инъекционных тел разной морфологии (нептунические дайки, силлы); образование трещиноватости в отложениях повышало их вертикальную проницаемость и способствовало миграции диагенетических растворов в смежные горизонты, что приводило к образованию субвертикальных карбонатных тел. Количество и интенсивность сейсмических событий менялось на разных этапах накопления толщи, а также было различным на площади палеобассейна. В восточном секторе Северокавказского региона, видимо, уже к среднему миоцену сформировался близкий к современному общий план сейсмической активности: максимальной в Дагестане и ослабевающей в западном направлении. Следы сейсмической активности отмечены также в терригенных отложениях майкопа (олигоцен–нижний миоцен) и нижней и средней юры

Исчерпывающий анализ состояния сейсмичности в новейшее время для Северного Кавказа, характера проявления <...>Высокая сейсмичность региона в среднемиоценовое время, очевидно, явилась также причиной появления внутри <...> Причем основные следы высокой сейсмичности здесь приурочены к верхней половине чокракской толщи; в карагане <...> же интенсивность сейсмичности явно уменьшается. <...> При этом периоды относительного покоя сменялись активизацией сейсмичности , что часто было обусловлено

34

Инженерно-геологические структуры обособляются по сочетанию региональных и зональных геологических факторов. Приведены классификации инженерно-геологических структур Земли и России. Описаны главные инженерно-геологические особенности и закономерности пространственного распределения континентальных субаэральных, континентальных субаквальных, переходных преимущественно субаквальных и океанических преимущественно субаквальных инженерно-геологических мега- и макроструктур, выделенных на территории России

Характерна очень высокая степень сейсмичности (до 10 баллов и выше). <...>сейсмичности (до 10 баллов и выше). <...> Сейсмическая активность высокая . <...> Другая характерная особенность рифтов - очень высокая сейсмичность , до 8–10 баллов и более. <...>сейсмичностью .

35

№4 [Автоматизация, телемеханизация и связь в нефтяной промышленности, 2018]

Разработка и сервисное обслуживание средств измерения, автоматизации, телемеханизации и связи, АСУТП, ИИС, САПР и метрологическому, математическому, программному обеспечению

При работе на самых высоких скоростях бурения – 260 об/мин можно использовать ММГ практически с любым <...> Соответствует глубине нефтепровода ИСОУ является инновационной, позволяет с высокой степенью точности <...> Использование вышеуказанных методов совместно обеспечивает высокую степень производительности и точности <...> Измерения необходимо проводить с высокой частотой дискретизации (до 50 измерений/с). <...> Так, наиболее весомые параметры должны иметь более высокие значения отношения подобия, например, можно

Предпросмотр: Автоматизация, телемеханизация и связь в нефтяной промышленности №4 2018.pdf (0,8 Мб)

36

№5 [Физико-технические проблемы разработки полезных ископаемых, 2009]

В журнале публикуются статьи по актуальным проблемам горной науки. Традиционные темы журнала: проблемы механики горных пород и массивов, возникающие в связи с деятельностью человека по эксплуатации недр; принципиально новые методы разрушения горных пород; современные технологии извлечения полезных ископаемых; основы создания и обеспечения эффективности применения средств механизации горных работ и автоматизации управления технологическими процессами; вопросы совершенствования подземных и открытых горных работ; повышение безопасности горных работ; проблемы обогащения полезных ископаемых.

сейсмичностью . <...> Для сопоставления данных шахтной сейсмичности с режимом естественной сейсмичности использовался каталог <...> Для природной сейсмичности рассматриваемого региона он равен 0.88. 3. <...> Исследование возбужденной сейсмичности на р. <...>Высокой скорости соответствует второй максимум тепловыделения на кривой ДСК.

Предпросмотр: Физико-технические проблемы разработки полезных ископаемых №5 2009.pdf (0,4 Мб)

37

О землетрясениях наслышаны все... Это и понятно, ведь человеку свойственно крепко стоять на ногах, а потому малейшие колебания почвы запоминаются им надолго, а память о них передается от поколения к поколению. Немудрено, что первые сведения о землетрясениях фиксировались сразу же, как только появилась письменность.

Апеннинский полуос­ тров, на котором расположено это госу­ дарство, давно известен не только как регион высокой <...>сейсмичности , но и как своеобразный полигон для всесторонне­ го изучения этого явления природы. <...> Кстати, большой вклад в изучение сейсмичности Италии внесли отече­ ственные исследователи. <...> Шенкарева издала книгу «Сейсмичность Апеннинского полу­ острова и прилегающих островов», в которой указала

38

В статье сделана попытка позиционирования разведанных и освоенных природно-экономических ресурсов на территории Согдийской области Республики Таджикистан с целью выявления наиболее перспективных и реальных к освоению объектов с точки зрения принятия решений в плане вложения инвестиций, развития и размещения производственных сил

экономика …на уровень использования ресурсного потенциала Согдийской области влияет в известной степени высокая <...>сейсмичность территории области и всего Таджикистана, вызывая удорожание капитального строительства <...> потенциала Согдийской области влияет в известной степени высокая сейсмичность территории области и всего <...> Таджикистана, не подтвердятся или их добыча в промышленных масштабах будет оценена как сопряженная с крайне высокой

39

ПЛАНИРОВКА И ЗАСТРОЙКА ОБЩЕСТВЕННЫХ ЦЕНТРОВ НАСЕЛЕННЫХ МЕСТ КОЛХОЗОВ И СОВХОЗОВ ОРОШАЕМЫХ РАЙОНОВ СРЕДНЕЙ АЗИИ АВТОРЕФЕРАТ ДИС. ... КАНДИДАТА ТЕХНИЧЕСКИХ НАУК

М.: МОСКОВСКИЙ ИНСТИТУТ ИНЖЕНЕРОВ ЗЕМЛЕУСТРОЙСТВА

Целью диссертационной работы является дальнейшее развитие научных основ планировки, застройки и благоустройства общественных центров сельских населенных мест Средней Азии на базе изучения и обобщения закономерностей их развития в период развернутого строительства коммунистического общества, а также разработка и внедрение в производственную практику прогрессивных приемов устройства центров с учетом зональных природных особенностей и новой системы расселения.

сейсмичность , а также демография населения, его возрастная структура и сложившиеся прогрес­ сивные традиции <...> Территория Средней Азии в климатиче­ ском отношении характеризуется высокими летними темпера­ турами, <...> Влияние сейсмичности . <...> Большинство сельских населенных пунктов Средней Азии находится в районах с высокой

сейсмичностью и динамичностью многолетнемерзлых пород (ММП). <...> , по которой может пройти газопровод, горное обрамление плато Укок, расположена в зоне 8–9-балльной сейсмичности <...> Силы Сибири», позволяют уже на стадии проектирования «Алтая» учесть сложную ландшафтную структуру с высокой <...>сейсмичностью и динамичностью мерзлотной обстановки и заранее предусмотреть необходимые природоохранные <...> является создание адаптированных к сложным природным условиям геотехнических систем, характеризующихся высокой

41

В статье представлены, в рамках проекта «Сахалин-2», технологии строительства с применением габионных конструкций и рулонных геосинтетических материалов с целью защиты трубопроводов в местах тектонических разломов. Обосновываются технические решения, обеспечивающие непромерзание и водонепроницаемость траншей, сохранение теплового баланса трубопроводов

<...>сейсмичности региона. <...> технологические решения перехода берегового магистрального трубопровода через тектонические разломы в условиях высокой <...>сейсмичности региона.

42

№4 [Геотектоника, 2018]

Публикуются материалы, посвященные общей и региональной тектонике, структурной геологии, геодинамике, экспериментальной тектонике, в том числе статьи, в которых рассматривается соотношение тектоники с глубинным строением Земли, магматизмом, метаморфизмом и полезными ископаемыми. Публикуются также рецензии на научные статьи и книги, информация о событиях научной жизни, новых научных изданиях и картографических материалах, новых методах тектонических исследований и обработки полученных результатов.

Коллизионный процесс продолжается и на современном этапе, что подтверждается высоким уровнем сейсмичности <...> скоростную структуру коры с современной сейсмичностью . <...> Этот процесс контролируется зоной высокой сейсмичности Керченско–Таманской ветви КСЗ, в пределах которой <...> Показана область высокой сейсмичности в интервале глубин 10–30 км, ограниченная сверху волноводом на <...> В восточном блоке такой высокой сейсмичности в коре не наблюдается.

Предпросмотр: Геотектоника №4 2018.pdf (0,1 Мб)

43

Рассмотрены морфоструктура и тепловой поток в зонах трансформных разломов Северной Атлантики и Юго-Восточной Пацифики. Подчеркнуто принципиальное различие теплового потока в активных и пассивных частях таких разломов. В активных частях, расположенных между примыкающими к разлому сегментами срединно-океанического хребта (СОХ), измеренный тепловой поток близок к наблюдаемому в рифтовых зонах СОХ и рассматривается, как суммарный эффект кондуктивной теплопроводности океанической коры и конвективного тепломассопереноса при циркуляции гидротерм внутри океанической коры. В пассивных частях тепловой поток по мере удаления от СОХ снижается до фоновых значений, характерных для талассократонов. Факторами, деформирующими тепловой поток, являются скорость седиментации в зоне разлома и рефракция кондуктивного теплового потока из-за неоднородности теплофизических свойств геологического разреза.

Таким образом, магматизм срединного хребта и сейсмичность трансформного разлома – это два сопряженных <...> Активная часть разлома (между соседними отрезками САХ) сейсмична . <...> Широтные депрессии отличаются относительно стабильными и аномально высокими его величинами (112–260 мВт <...> Исходя из особенностей сейсмичности , подводного рельефа и тектоники, зону разделяют на три сегмента [ <...>сейсмичностью .

44

<...> <...> Они характеризуются примерно одинаковой мощностью коры (25-40, реже до 55 км) и высокой сейсмичностью <...> "; II "общая сейсмичность фоновая сейсмичность "; III "общая сейсмичность афтершоковая последовательность <...> ЗАКЛЮЧЕНИЕ Для Камчатки с ее высокой сейсмичностью вопрос прогноза землетрясений имеет первостепенное

Предпросмотр: ВЕСТНИК КАМЧАТСКОЙ РЕГИОНАЛЬНОЙ АССОЦИАЦИИ «УЧЕБНО-НАУЧНЫЙ ЦЕНТР». Серия Науки о Земле №1 2008.pdf (0,3 Мб)

температуры, сейсмичность и т.д.). <...> Уменьшение мощности мерзлоты до таких пределов требует повышения расчетного балла сейсмичности . <...> Т а б л и ц а 5.1 Оценка сейсмичности площадки строительства в зависимости от свойств грунтов Категория <...> грунта по сейсмическим свойствам Грунты Сейсмичность площадки строительства при сейсмичности района, <...> При расчетной сейсмичности 8 и менее баллов допускается выполнение зимней кладки вручную с обязательным

Предпросмотр: Строительство зданий в экстремальных условиях планировочные, конструктивные и технологические приемы реконструкции.pdf (0,4 Мб)

47

№1 [ВЕСТНИК КАМЧАТСКОЙ РЕГИОНАЛЬНОЙ АССОЦИАЦИИ «УЧЕБНО-НАУЧНЫЙ ЦЕНТР». Серия: Науки о Земле, 2008]

В журнале публикуются результаты фундаментальных и прикладных исследований в области наук о Земле (геология, геофизика, геохимия, гидрогеология, вулканология, сейсмология). Журнал «Вестник КРАУНЦ. Серия: Науки о Земле» включен в список рецензируемых научных журналов и изданий, рекомендованных ВАК для опубликования основных научных результатов диссертации на соискание ученой степени доктора и кандидата наук.

Одной из наиболее крупных оперяющих структур системы Сан-Андреас служит высоко сейсмичная зона активных <...> Восточная граница блока Баян-Хар (22), обрамляющегося высоко сейсмичными межблоковыми зонами, совпадает <...> Они характеризуются примерно одинаковой мощностью коры (25-40, реже до 55 км) и

Массовое производство АГБ в СССР началось в конце 50-х гг. прошлого столетия, когда были построены 10 заводов, укомплектованные польским оборудованием, с совокупной мощностью более 1,5 млн м3/год . Предприятия преимущественно выпускали крупноразмерные армированные изделия с плотностью 800–1000 кг/м3. Позже к этим заводам добавились заводы с отечественным оборудованием («Универсал 60», «Силбетблок» и др.), позволяющие выпускать мелкие блоки по резательной технологии. К 1984 г. в СССР насчитывается уже 99 предприятий по выпуску ячеистого бетона с суммарной годовой производительностью около 5,9 млн м3, выпускающие армированные изделия и мелкие блоки с плотностью 600–700 кг/м3 .

В тоже время импорт изделий из АГБ, главным образом из Белоруссии, остается достаточно высоким . <...> В ряде случаев на плотность выпускаемых изделий влияет сейсмичность региона. <...> В частности, в Южном округе выпуск изделий пониженной плотности затруднен в связи с высокой сейсмичностью

49

№1 [Вестник Воронежского государственного университета. Серия: Геология, 2007]

Журнал входит в Перечень ВАК ведущих рецензируемых научных журналов и изданий, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук

Вокруг же межгорных впадин сейсмичность , как правило, высокая . <...> Весьма вероятно, что более высокий уровень сейсмичности к юго-западу от ТаласоФерганского разлома связан <...>Сейсмичность Земли. <...> Островные дуги имеют магматическое происхождение; вдоль них имеет место высокая сейсмичность . <...> В Северном полушарии (Камчатка, Алеутские острова, Аляска) высокая сейсмичность достигает 60°.

Предпросмотр: Вестник Воронежского государственного университета. Серия Геология №1 2007.pdf (0,3 Мб)

50

№3 [Геология и геофизика, 2019]

Ежемесячный научный журнал издается Сибирским Отделением РАН с 1960 г. Журнал публикует общетеоретические и методические статьи по всем вопросам геологии и геофизики. Его отличие от других геологических журналов в наибольшем охвате тематики в области наук о Земле: палеонтология и региональная геология, минералогия и петрология, проблемы геотектоники и геоморфологии полезных ископаемых, металлогении и геохимии, глобальная и разведочная геофизика, различные аспекты экспериментов моделирования природных процессов. Большое внимание уделяется освещению новейших методов лабораторных исследований и их прикладному использованию. Журнал имеет подписчиков во всех научных центрах, крупных промышленных городах нашей страны и за рубежом. "Elsevier” распространяет наш журнал на английском языке во многих странах мира. Журнал “Геология и геофизика” индексируется в Сurrent Contents

Интенсивный полиморфизм при высоких давлениях испытывает кремнезем. <...> Характерны высокие концентрации TiO2 (2.40-3.86 мас. %), Zr (244 г/т), Nb (54 г/т) и высокие значения <...> Южаковские граниты обладают наиболее высоким K/Rb отношением, равным 500. <...> Среди них обнаружены разновидности с очень высокими содержаниями РЗЭ (до 850 г/т). <...>Сейсмичность и районирование сейсмической опасности территории Монголии.

Предпросмотр: Геология и геофизика №3 2019.pdf (0,5 Мб)

Сейсмические (от греческого - сотрясение) явления проявля­ются в виде упругих колебаний земной коры. Это грозное явле­ние природы типично районам геосинклиналей, где активно дей­ствуют современные горообразовательные процессы, а также зонам субдукции и обдукции.

Сотрясения сейсмического происхождения происходят почти непрерывно. Специальные приборы регистрируют в течение года более 100 тысяч землетрясений, но из них, к счастью, только около 100 приводят к разрушительным последствиям и отдель­ные - к катастрофам с гибелью людей, массовыми разрушения­ми зданий и сооружений (рис. 45).

Землетрясения возникают также в процессе извержения вулка­нов (в России, например, на Камчатке), возникновения провалов в связи с обрушением горных пород в крупные подземные пещеры, узкие глубокие долины, а также в результате мощных взры­вов, производимых, например, в строительных целях. Разрушите­льное действие таких землетрясений невелико и они имеют местное значение, а наиболее разрушительными являются текто­нические сейсмические явления, захватывающие, как правило, большие площади

История знает катастрофические землетрясения, когда погиба­ли десятки тысяч людей и разрушались целые города или их боль­шая часть (г. Лиссабон - 1755 г., г. Токио - 1923 г., г. Сан-Фран­циско - 1906 г., Чили и остров Сицилия - 1968 г.). Только в первой половине XX в. их было 3749, при этом только в Прибай­калье произошло 300 землетрясений. Наиболее разрушитель­ные - в городах Ашхабаде (1948) и Ташкенте (1966).

Исключительное по силе катастрофическое землетрясение про­изошло 4 декабря 1956 г в Монголии, зафиксированное также на территории Китая и России. Оно сопровождалось огромными раз­рушениями. Один из горных пиков раскололся пополам, часть го­ры высотой 400 м обрушилась в ущелье. Образовалась сбросовая впадина длиной до 18 км и шириной 800 м. На поверхности земли появились трещины шириной до 20 м. Главная из этих трещин протянулась до 250 км.

Наиболее катастрофическим было землетрясение 1976 г., про­исшедшее в г. Таншань (Китай), в результате которого погибло 250 тыс. человек в основном под обрушившимися зданиями из глины (сырцового кирпича).

Тектонические сейсмические явления возникают как на дне океанов, так и на суше. В связи с этим различают моретрясения и землетрясения.

Моретрясения возникают в глубоких океанических впадинах Тихого, реже Индийского и Атлантического океанов. Быстрые поднятия и опускания дна океанов вызывают смещение крупных масс горных пород и на поверхности океана порождают пологие волны (цунами) с расстоянием между гребнями до 150 км и очень небольшой высотой над большими глубинами океана. При подхо­де к берегу вместе с подъемом дна, а иногда сужением берегов в бухтах высота волн увеличивается до 15-20 м и даже 40 м.

Цунами перемещаются на расстояния в сотни и тысячи кило­метров со скоростью 500-800 и даже более 1000 км/ч. По мере уменьшения глубины моря крутизна волн резко возрастает и они со страшной силой обрушиваются на берега, вызывая разруше­ния сооружений и гибель людей. При моретрясении 1896 г. в Японии были отмечены волны высотой 30 м. В результате уда­ра о берег они разрушили 10 500 домов, погибло более 27 тыс. человек.

От цунами чаще всего страдают Японские, Индонезийские, Филиппинские и Гавайские острова, а также тихоокеанское побе­режье Южной Америки. В России это явление наблюдается на восточных берегах Камчатки и Курильских островах. Последнее катастрофическое цунами в этом районе возникло в ноябре 1952 г. в Тихом океане, в 140 км от берега. Перед приходом волны море отступило от берега на расстояние 500 м, а через 40 мин на побе­режье обрушилось цунами с песком, илом и различными обломка­ми. Затем последовала вторая волна высотой до 10-15 м, которая довершила разрушение всех построек, расположенных ниже деся­тиметровой отметки.

Самая высокая сейсмическая волна - цунами поднялась у по­бережья Аляски в 1964 г.; высота ее достигла 66 м, а скорость 585 км/ч.

Частота возникновения цунами не столь велика, как у земле­трясений. Так, за 200 лет на побережье Камчатки и Курильских островов их наблюдалось всего 14, из которых четыре были ката­строфическими.

На побережье Тихого океана в России и других странах со­зданы специальные службы наблюдения, которые оповещают о приближении цунами. Это позволяет вовремя предупредить и укрыть людей от опасности. Для борьбы с цунами возводят ин­женерные сооружения в виде защитных насыпей, железобетон­ных молов, волноотбойных стенок, создают искусственные отме­ли. Здания размещают на высокой части рельефа.

Землетрясения. Сейсмические волны. Очаг зарождения сейсми­ческих волн называют гипоцентром (рис. 46). По глубине залега­ния гипоцентра различают землетрясения: поверхностные - от 1 до 10 км глубины, коровью - 30-50 км и глубокие (или плуто­нические) - от 100-300 до 700 км. Последние находятся уже в мантии Земли и связаны с движениями, происходящими в глу­бинных зонах планеты. Такие землетрясения наблюдались на Да­льнем Востоке, в Испании и Афганистане. Наиболее разрушите­льными являются поверхностные и коровые землетрясения.


Непосредственно над гипоцентром на поверхности земли рас­полагается эпицентр. На этом участке сотрясение поверхности происходит в первую очередь и с наибольшей силой. Анализ землетрясений показал, что в сейсмически активных районах Земли 70 % очагов сейсмических явлений располагаются до глу­бины 60 км, но наиболее сейсмичной все же является глубина от 30 до 60 км.

От гипоцентра во все стороны расходятся сейсмические волны, по своей природе являющиеся упругими колебаниями. Различают продольные и поперечные сейсмические волны, как упругие коле­бания, распространяющиеся в земле от очагов землетрясений, взрывов, ударов и других источников возбуждения. Сейсмические волны - продольные, или /*-волны (лат.primae - первые), приходят к поверхности земли первыми, так как имеют скорость в 1,7 раза большую, чем поперечные волны;поперечные, или 5-волны (лат.secondae - вторые), иповерхностные, илиL-волны (лат.1оп- qeg - длинный). ДлиныL-волн больше, а скорости меньше, чем уР- и 5-волн. Продольные сейсмические волны - волны сжатия и растяжения среды в направлении сейсмических лучей (во все сто­роны от очага землетрясения или другого источника возбуждения); поперечные сейсмические волны - волны сдвига в направлении, перпендикулярном сейсмическим лучам; поверхностные сейсмиче­ские волны - волны, распространяющиеся вдоль поверхности земли.L-волны подразделяют на волны Лява (поперечные колеба­ния в горизонтальной плоскости, не имеющие вертикальной со­ставляющей) и волны Рэлея (сложные колебания, имеющие верти­кальную составляющую), названные так в честь открывших их ученых. Наибольший интерес для инженера-строителя имеют про­дольные и поперечные волны. Продольные волны вызывают рас­ширение и сжатие пород в направлении их движения. Они рас­пространяются во всех средах - твердых, жидких и газообразных. Скорость их зависит от вещества пород. Это можно видеть из при­меров, приведенных в табл. 11. Поперечные колебания перпенди­кулярны продольным, распространяются только в твердой среде и вызывают в породах деформации сдвига. Скорость поперечных волн примерно в 1,7 раза меньше, чем продольных.

На поверхности земли от эпицентра во все стороны расходятся волны особого рода - поверхностные, являющиеся по своей при­роде волнами тяжести (подобно морским валам). Скорость их рас­пространения более низкая, чем у поперечных, но они оказывают на сооружения не менее пагубное влияние.

Действие сейсмических волн или, иначе говоря, продолжитель­ность землетрясений, обычно проявляется в течение нескольких секунд, реже минут. Иногда наблюдаются длительные землетрясе­ния. Например, на Камчатке в 1923 г. землетрясение продолжалось с февраля по апрель месяц (195 толчков).

Таблица 11

Скорость распространения продольных (v p) и поперечных (v s ) волн в различных породах и в воде, км/сек

Горные породы

v r

v s

Скальные (граниты, гнейсы, песчаники, известняки и др.)

Полускальные (гипсы, мергели, глини­стые сланцы)

Крупнообломочные (галечники, гравий и др.)

Песчаные (пески разной крупности)

0,35-0,85

Глинистые (глины, суглинки, супеси)

0,35-0,8

Насыпные грунты и почвы

0,1-0,27

Мерзлые (песчано-глинистые)

0,5-1,25

1,43-1,48


Оценка силы землетрясений. За землетрясениями ведут посто­янные наблюдения при помощи специальных приборов - сей­смографов, которые позволяют качественно и количественно оценивать силу землетрясений.

Сейсмические шкалы (гр. seismos -землетрясение + лат.sca - la - лестница) используют для оценки интенсивности колебаний (сотрясений) на поверхности Земли при землетрясениях в баллах. Первую (из близких к современным) 10-балльную сейсмическую шкалу составили в 1883 г. совместно М. Росси (Италия) и Ф. Фо­рель (Швейцария). В настоящее время большинство стран мира используют 12-балльные сейсмические шкалы: «ММ» в США (усо­вершенствованная шкала Меркалли-Конкани-Зиберга); Между­народнаяMSK-64 (по фамилии авторов С. Медведева, В. Шпон- хойера, В. Карника, созданная в 1964 г.); Института физики Земли АН СССР и др. В Японии используется 7-балльная шкала, состав­ленная Ф. Омори (1900) и в последующем многократно пе­реработанная. Балльность по шкалеMSK-64 (уточненной и дополненной Межведомственным советом по сейсмологии и сей­смостойкому строительству в 1973 г.) устанавливается:

    по поведению людей и предметов (от 2 до 9 баллов);

    по степени повреждения или разрушения зданий и сооруже­ний (от 6до10баллов);

    по сейсмическим деформациям и возникновению других природных процессов и явлений (от 7 до 12 баллов).

Очень известной является шкала Рихтера, предложенная в 1935 г. американским сейсмологом Ч.Ф. Рихтером, теоретически обоснованная совместно с Б. Гутенбергом в 1941-1945 гг.шкала магнитуд (М); уточненная в 1962 г. (Московско-Пражская шкала) и рекомендованная Международной ассоциацией сейсмологии и физики недр Земли в качестве стандартной. По этой шкале маг­нитуда любого землетрясения определяется как десятичный лога­рифм максимальной амплитуды сейсмической волны (выражен­ной в микрометрах), записанной стандартным сейсмографом на расстоянии 100 км от эпицентра. При других расстояниях от эпицентра до сейсмостанции вводится поправка к замеренной амплитуде с целью приведения ее к той, которая соответствует стандартному расстоянию. Нуль шкалы Рихтера (М = 0) дает очаг, при котором амплитуда сейсмической волны на расстоянии 100 км от эпицентра будет равна 1 мкм, или 0,001 мм. При уве­личении амплитуды в10раз магнитуда возрастает на единицу. При амплитуде, меньшей 1 мкм, магнитуда имеет отрицатель­ные значения; известные максимальные значения магнитуд М =8,5...9.Магнитуда - расчетная величина, относительная ха­рактеристика сейсмического очага, не зависящая от места распо­ложения записывающей станции; используется для оценки общей энергии, выделившейся в очаге (установлена функциональная за­висимость между магнитудой и энергией).

Энергия, выделившаяся в очаге, может выражаться абсолют­ной величиной (Е , Дж), величиной энергетического класса(K = lgE ) или условной величиной, называемой магнитудой,.

Магнитуда самых больших землетрясений М = 8,5...8,6, что соответствует выделению энергииили семнадцатому - восемнадцатому энергетическим классам. Интенсивность проявления землетрясений на поверхности земли (сотрясаемость на поверхности) определяется по шкалам сейсми­ческой интенсивности и оценивается в условных единицах - бал­лах. Балльность(I ) является функцией магнитуды (М), глубины очага (h) и расстояния от рассматриваемой точки до эпицент­ра(L ):

Ниже приводятся сравнительные характеристики разных групп землетрясений (табл, 12).

Для расчетов силовых воздействий (сейсмических нагрузок), оказываемых землетрясениями на здания и сооружения, исполь­зуют понятия: ускорение колебаний (а), коэффициент сейсмич­ности (к с) и максимальное относительное смещение (0.

На практике силу землетрясений измеряют в баллах. В Рос­сии используется 12-балльная шкала. Каждому баллу соответству­ет определенное значение ускорения колебания а (мм/с 2). В табл. 13 приведена современная 12-балльная шкала и дана крат­кая характеристика последствиям землетрясений.

Сейсмические районы территории России. Вся земная поверх­ность разделена на зоны: сейсмические, асейсмические и пене­сейсмические. Ксейсмическим относят районы, которые располо­жены в геосинклинальных областях. Васейсмических районах землетрясений не бывает (Русская равнина, Западная и Северная Сибирь). Впенесейсмических районах землетрясения происходят сравнительно редко и бывают небольшой силы.

Для территории России составлена карта распространения землетрясений с указанием баллов. К сейсмическим районам от­носятся Кавказ, Алтай, Забайкалье, Дальний Восток, Сахалин, Курильские острова, Камчатка. Эти районы занимают пятую часть территории, на которой располагаются крупные города. В настоящее время эта карта обновляется и в ней будут содержать­ся сведения о повторяемости землетрясений во времени.

Землетрясения способствуют развитию чрезвычайно опасных гравитационных процессов - оползней, обвалов, осыпей. Как пра­вило, все землетрясения от семи баллов и выше сопровождаются этими явлениями, причем катастрофического характера. Повсеме­стное развитие оползней и обвалов наблюдалось, например, во время Ашхабадского землетрясения (1948), сильного землетрясе­ния в Дагестане (1970), в долине Чхалты на Кавказе (1963), в долине р. Нарын (1946), когда сейсмические колебания вывели из состояния равновесия крупные массивы выветрелых и разрушен­ных пород, которые располагались в верхних частях высоких скло­нов, что вызвало подпруживание рек и образование крупных гор­ных озер. Существенное влияние на развитие оползня оказывают и слабые землетрясения. В этих случаях они являются как бы тол­чком, спусковым механизмом уже подготовленного к обрушению массива. Так, на правом склоне долины р. Актуры в Киргизии по­сле землетрясения в октябре 1970 г. образовались три обширных оползня. Зачастую не столько сами землетрясения оказывают вли­яние на здания и сооружения, сколько вызванные ими оползневые и обвальные явления (Каратегинское, 1907 г., Сарезское, 1911 г., Файзабадское, 1943 г., Хаитское, 1949 г., землетрясения). Объем массы сейсмического обвала (обвал - обрушение), расположенно­го в сейсмоструктуре Бабха (северный склон хребта Хамар-Дабан, Восточная Сибирь), составляет около 20 млн м 3 . Сарезское земле­трясение силой 9 баллов, происшедшее в феврале 1911 г., сбросило с правого берега р. Мургаб в месте впадения в нее Усой-Дарьи2,2млрд м 3 горной массы, что привело к образованию плотины высотой 600-700 м, шириной 4 км, длиной6км и озера на высо­те 3329 м над уровнем моря объемом 17-18 км 3 , площадью зерка­ла 86,5 км 2 , длиной 75 км, шириной до 3,4 км, глубиной 190 м. Под завалом оказалось небольшое селение, а под водой киш­лак Сарез.

В результате сейсмического воздействия при Хаитском земле­трясении (Таджикистан, 10 июля 1949 г.) силой 10 баллов большое развитие получили обвальные и оползневые явления на склоне хребта Тахти, после чего сформировались земляные лавины и се­левые потоки 70-метровой толщины со скоростью 30 м/с. Объем селевого потока - 140 млн м 3 , площадь разрушений - 1500 км 2 .

Строительство в сейсмических районах (сейсмическое микрорай­онирование). При строительных работах в районах землетрясений необходимо помнить, что баллы сейсмических карт характеризу­ют только некоторые усредненные грунтовые условия района и поэтому не отражают конкретных геологических особенностей той или иной строительной площадки. Эти баллы подлежат уточ­нению на основе конкретного изучения геологических и гидроге­ологических условий строительной площадки (табл. 14). Это до­стигается увеличением исходных баллов, полученных по сейсмической карте, на единицу для участков, сложенных рых­лыми породами, в особенности увлажненными, и их уменьшени­ем на единицу для участков, сложенных прочными скальными породами. Породы II категории по сейсмическим свойствам свою исходную балльность сохраняют без изменения.

Корректировка баллов строительных участков справедлива, главным образом, для равнинных или холмистых территорий. Для горных районов необходимо принимать во внимание и дру­гие факторы. Опасными для строительства являются участки с сильно расчлененным рельефом, берега рек, склоны оврагов и ущелий, оползневые и карстовые участки. Крайне опасны участ­ки, расположенные вблизи тектонических разрывов. Весьма зат­руднительно строить при высоком залегании уровня грунтовых вод (1-3 м). Следует учитывать, что наибольшие разрушения при землетрясениях происходят на заболоченных территориях, на обводненных пылеватых, на лессовых недоуплотненных породах, которые при сейсмическом сотрясении энергично доуплотняют- ся, разрушая выстроенные на них здания и сооружения.

При ведении инженерно-геологических изысканий в сейсми­ческих районах требуется выполнять дополнительные работы, регламентированные соответствующим разделом СНиП 11.02-96 и СП 11.105-97.

На территориях, где сила землетрясений не превышает 7 бал­лов, основания зданий и сооружений проектируют без учета сей­смичности. В сейсмических районах, т. е. районах с расчетной сейсмичностью 7, 8и 9 баллов, проектирование оснований ведут в соответствии с главой специального СНиПа по проектирова­нию зданий и сооружений в сейсмических районах.

В сейсмических районах не рекомендуется прокладывать во­доводы, магистральные линии и канализационные коллекторы в водонасыщенных грунтах (кроме скальных, полускальных и круп­нообломочных), в насыпных грунтах независимо от их влажно­сти, а также на участках с тектоническими нарушениями. Если основным источником водоснабжения являются подземные воды трещиноватых и карстовых пород, дополнительным источником всегда должны служить поверхностные водоемы.

Большое практическое значение для жизни и производствен­ной деятельности человека имеет предсказание момента начала землетрясения и его силы. В этой работе уже имеются заметные успехи, но в целом проблема прогнозирования землетрясений еще находится на стадии разработки.

Вулканизм - это процесс прорыва магмы из глубин земной коры на поверхность земли.Вулканы - геологические образова­ния в виде гор и возвышений конусовидной, овальной и других форм, возникшие в местах прорыва магмы на земную поверх­ность.

Вулканизм проявляется в районах субдукций и обдукций, а внутри литосферных плит - в зонах геосинклиналей. Наибольшее количество вулканов расположено вдоль побережья Азии и Амери­ки, на островах Тихого и Индийского океанов. Вулканы имеются также на некоторых островах Атлантического океана (у побережья Америки), в Антарктиде и Африке, в Европе (Италия и Ислан­дия). Различают вулканы действующие и потухшие. Действующими называют те вулканы, которые постоянно или периодически из­вергаются;потухшими - те, которые прекратили свое действие, и об их извержениях нет данных. В ряде случаев потухшие вулканы снова возобновляют свою деятельность. Так было с Везувием, нео­жиданное извержение которого произошло в 79 г. н. э.

На территории России вулканы известны на Камчатке и на Ку­рильских островах (рис. 47). На Камчатке расположено 129 вулка­нов, из них 28 действующих. Наибольшую известность получил вулкан Ключевская сопка (высота 4850 м), извержение которого повторяется приблизительно через каждые 7-8 лет. Активно дей­ствуют вулканы Авачинский, Карымский, Безымянский. На Кури­льских островах насчитывают до 20вулканов, из которых около половины действующих.

Потухшие вулканы на Кавказе - Казбек, Эльбрус, Арарат. Казбек, например, еще действовал в начале четвертичного перио­да. Его лавы во многих местах покрывают район Военно-Грузин­ской дороги.

В Сибири в пределах Витимского нагорья также обнаружены потухшие вулканы. Извержения вулканов происходят по-разному. Это в большой мере зависит от типа магмы, которая извергается. Кислая и сред­няя магмы, будучи очень вязкими, дают извержения со взрыва­ми, выбросом камней и пепла. Излияние магмы основного со­става обычно происходит спокойно, без взрывов. На Камчатке и Курильских островах извержения вулканов начинаются с подзем­ных толчков, далее следуют взрывы с выбросом водяных паров и излиянием раскаленной лавы.

Извержение, например, Ключевской сопки в 1944-1945 гг. сопровождалось образованием над кратером раскаленного конуса высотой до 1500 м, выбросом раскаленных газов и обломков по­род. После этого произошло излияние лавы. Извержение сопро­вождалось землетрясением в 5 баллов. При извержении вулканов типа Везувия характерно выпадение обильных дождей за счет конденсации водяных паров. Возникают исключительные по силе и грандиозности грязевые потоки, которые, устремляясь вниз по склонам, приносят огромные разрушения и опустошения. Так же может действовать вода, образовавшаяся в результате таяния сне­гов на вулканических склонах кратеров; и вода озер, сформиро­вавшихся на месте кратера.

Строительство зданий и сооружений в вулканических районах имеет определенные трудности. Землетрясения обычно не дости­гают разрушительной силы, но продукты, выделяемые вулканом, могут пагубно сказаться на целостности зданий и сооружений и их устойчивости. Многие газы, выделяемые при извержениях, например серни­стые, опасны для людей. Конденсация паров воды вызывает ка­тастрофические ливни и грязевые потоки. Лава образует потоки, ширина и длина которых зависят от уклона и рельефа местности. Известны случаи, когда длина лавового потока достигала 80 км (Исландия), а мощность - 10-50 м. Скорость течения основных лав составляет 30 км/ч, кислых - 5-7 км/ч, из вулканов взлета­ют вулканические пеплы (пылеватые частицы), песок, лапилли (частицы 1-3 см в диаметре), бомбы (от сантиметров до не­скольких метров). Все они представляют собой застывшую лаву и при извержении вулкана разлетаются на различные расстояния, засыпают поверхность земли многометровым слоем обломков, обрушивают кровли зданий.

Из газеты "Строительный эксперт ", декабрь 1998 г., №23

"…Особенно остро проблемы, связанные с надежностью домов, возникают при строительстве в районах с повышенной сейсмической активностью. Для России – это Дальний Восток и Северный Кавказ. Для многих стран СНГ сейсмические районы – это вся их территория или существенная её часть.

Взять под квалифицированный контроль всё индивидуальное строительство, конечно, невозможно. Другой путь – создание весьма привлекательных строительных технологий, позволяющих в любых условиях обеспечить высокий запас надежности возводимых зданий с комфортным проживанием в них… К такой технологии можно отнести ТИСЭ…"

Нас интересует природа землетрясений, их физические параметры и степень влияния на сооружения.

Основными причинами землетрясений являются перемещения блоков и плит земной коры. По сути, кора Земли – это плиты, плавающие на поверхности жидкой магматической сферы. Приливные явления, обусловленные притяжением Луны и Солнца, беспокоят эти плиты, отчего по линиям их стыка накапливаются высокие напряжения. Достигая критической величины, эти напряжения сбрасываются в виде землетрясений. Если очаг землетрясения находится на материке, то в эпицентре и вокруг него возникают сильные разрушения, если же эпицентр находится в океане, то перемещения коры вызывают цунами. В зоне больших глубин это еле заметная волна. У берега её высота может достичь десятков метров!

Нередко причиной колебаний грунта могут быть местные оползни, сели, провалы техногенного характера, вызванные созданием полостей (горные выработки, забор воды из артезианских скважин…).

В России принята 12-балльная шкала оценки силы землетрясения. Главным признаком здесь является степень повреждения зданий и сооружений. Районирование территории России по балльному принципу приводится в строительных нормах (СНиП 11-7-81).

Почти 20% территории нашей страны находится в сейсмически опасных зонах с интенсивностью землетрясений 6 – 9 баллов и 50% подвержены 7-9-балльным землетрясениям.

С учетом того, что технологией ТИСЭ интересуются не только в России, но и в странах СНГ, приводим карту районирования России и соседних стран, находящихся в сейсмически активных зонах (Рисунок 181).

Рисунок 181. Карта сейсмического районирования России и соседних стран

На территории нашей страны выделяют следующие сейсмически опасные зоны: Кавказ, Саяны, Алтай, Прибайкалье, Верхоянск, Сахалин и Приморье, Чукотка и Корякское нагорье.

Строительство в сейсмически опасных зонах требует применения конструкций увеличенной прочности, жесткости и устойчивости, что вызывает удорожание строительства в 7-балльной зоне на 5%, в 8-балльной – на 8% и в 9-балльной -- на 10%.

Некоторые особенности сейсмических нагружений элементов здания :

– при землетрясении здание подвергается воздействию волн нескольких типов: продольных, поперечных и поверхностных;

– наибольшие разрушения вызывают горизонтальные колебания земли, при них разрушающие нагрузки носят инерционный характер;

– наиболее характерные периоды колебаний почвы лежат в диапазоне 0,1 – 1,5 сек;

– максимальные ускорения составляют 0,05 – 0,4 g, причем наибольшие ускорения приходятся на периоды 0,1 – 0,5 сек, чему соответствуют минимальные амплитуды колебаний (около 1 см) и максимальные разрушения зданий;

– большому периоду колебаний соответствуют минимальные ускорения и максимальные амплитуды колебаний почвы;

–- снижение массы конструкции ведет к снижению инерционных нагрузок;

– вертикальное армирование стен здания целесообразно при наличии горизонтальных несущих слоев в виде, например, железобетонных перекрытий;

– сейсмоизоляция зданий – наиболее перспективный способ повышения их сейсмоустойчивости.

Это интересно

Идея сейсмоизоляции зданий и сооружений возникла в далекой древности. При археологических раскопках в Средней Азии были обнаружены под стенами зданий Хека камышитовые маты. Аналогичные конструкции применялись в Индии. Известно, что землетрясение 1897 г. в районе Шиллонга разрушило почти все каменные здания, кроме тех, которые были построены на сейсмоамортизаторах, хотя и примитивной конструкции.

Строительство зданий и сооружений в сейсмоактивных регионах требует выполнения сложных инженерных расчетов. Сейсмостойкие строения, возводимые индустриальными методами, проходят глубокие и всесторонние проработки и сложные расчеты с привлечением большого числа специалистов. Индивидуальному застройщику, решившему построить свой домик, такие дорогостоящие методы недоступны.

Технология ТИСЭ предлагает повышение сейсмоустойчивости зданий, возводимых в условиях индивидуального строительства, сразу по трем направлениям: снижение инерционных нагрузок, повышение жесткости и прочности стен, а также введение механизма сейсмоизоляции.

Высокая степень пустотности стен позволяет значительно снизить инерционные нагрузки на здание, а наличие сквозных вертикальных пустот дает возможность вводить вертикальное армирование, органично вписанное в конструкцию самих стен. По иным технологиям индивидуального строительства это выполнить довольно сложно.

Механизмом сейсмоизоляции является столбчато-ленточный фундамент, возведенный по технологии ТИСЭ .

В качестве вертикальной арматуры фундаментного столба используется пруток диаметром 20 мм из углеродистой стали, который проходит через ростверк. Пруток имеет гладкую поверхность, покрытую гудроном. Снизу он снабжен законцовкой, заделанной в тело столба, а сверху – законцовкой, выступающей из ростверка и снабженной резьбой М20 под гайку (патент РФ № 2221112 от 2002 г.). Сама опора входит в массив ростверка на 4…6 см (Рисунок 182, а).

После бетонирования вокруг каждой из опор тем же фундаментным буром делают три-четыре полости глубиной 0,6…0,8 м и заполняют их или песком, или смесью песка с керамзитом, или шлаком. В песчаном грунте такие полости можно не выполнять.


Рисунок 182. Сейсмоизолирующий фундамент с центральным прутком:
А – нейтральное положение опоры фундамента; Б – отклоненное положение опоры фундамента;
1 – опора; 2 – пруток; 3 – законцовка нижняя; 4 – гайки; 5 – ростверк; 6 – полость с песком; 7 – отмостка; 8 – направления колебаний грунта

По окончании строительства гайки прутков затягиваются тарированным ключом. Так в зоне стыка столба с ростверком создается "упругий" шарнир.

При горизонтальных колебаниях почвы столбы отклоняются относительно упругого шарнира, пруток растягивается, при этом ростверк со зданием по инерции остаются неподвижными (Рисунок 182, б). Упругость почвы и прутков возвращает столбы в исходное вертикальное положение. В течение всего срока эксплуатации здания к узлам натяжения арматуры столбов должен быть обеспечен свободный подход как по внешнему периметру дома, так и под внутренними силовыми стенами. После завершения строительства и после значительных сейсмических колебаний затяжку всех гаек восстанавливают тарированным ключом (М = 40 – 70 кг/м). Такой вариант Сейсмоизолирующего фундамента можно считать в какой-то степени индустриальным, так как он включает прутки и гайки, которые проще изготовить на производстве.

Технологией ТИСЭ предусмотрено выполнение сейсмоизолирующих опор и более демократичным способом, доступным застройщикам с ограниченными производственными возможностями. В качестве армирующего упругого элемента используют две скобы из прутка арматуры диаметром 12 мм с загнутыми законцовками (Рисунок 183). Средняя часть ветвей арматуры на длине около 1 м смазывается гудроном или битумом (в равном удалении от краев), чтобы исключить сцепление арматуры с бетоном. При сейсмических колебаниях почвы прутки арматуры в средней своей части растягиваются. При горизонтальных смещениях почвы в 5 см арматура растягивается на 3…4 мм. При длине зоны растяжения 1 м в арматуре возникают напряжения 60…80 кг/мм², что лежит в зоне упругих деформаций материала арматуры.


Рисунок 183. Сейсмоизолирующий фундамент с арматурными скобами:
1 – опора; 2 – скоба; 3 – ростверк; 4 – полость с песком

При строительстве дома в сейсмоактивных зонах гидроизоляцию по соединению ростверка со стенами не делают (для исключения их относительного смещения). По технологии ТИСЭ гидроизоляцию выполняют по стыку ростверка с фундаментными столбами (два слоя рубероида на битумной мастике).

При строительстве смежных сооружений, крыльца, элементов отмостки и т. п. следует постоянно обращать внимание на то, чтобы лента фундамента не касалась их своей боковой поверхностью. Зазор между ними должен быть не менее 4 – 6 см. При необходимости допускается подобный контакт (с крыльцом, каркасом легких щитовых пристроек, веранды) из соображения, что после разрушения землетрясением они будут восстановлены.

Это не фундамент, но…

При строительстве в сейсмоакивных районах применение кровли из глиняной или пескобетонной черепицы должно быть обоснованным.

Многие японские дома индивидуальной постройки, имеющие легкий каркас, покрыты добротной глиняной черепицей. В условиях плотной японской застройки такие дома хорошо переносят тайфуны. Однако при землетрясении под тяжестью черепичной крыши дом рушится, погребая жителей под своей непомерной тяжестью.

В настоящее время на строительном рынке появилось много "легких" кровельных материалов, хорошо имитирующих черепицу. Легкая кровля – это минимальные инерционные нагрузки для соединения крыши со стенами и исключение обрушения кровли от излишнего ее веса.