Уход

Написать нормальное уравнение плоскости. Задача C2: уравнение плоскости через определитель

Написать нормальное уравнение плоскости. Задача C2: уравнение плоскости через определитель

Положение плоскости в пространстве будет вполне определено, если зададим ее расстояние от начала О, т. е. длину перпендикуляра ОТ, опущенного из точки О на плоскость, и единичный вектор п°, перпендикулярный к плоскости и направленный от начала О к плоскости (рис. 110).

Когда точка М движется по плоскости, то ее радиус-вектор меняется так, что все время связан некоторым условием. Посмотрим, каково это условие. Очевидно, для любой точки лежащей на плоскости, имеем:

Это условие имеет место лишь для точек плоскости; оно нарушается, если точка М лежит вне плоскости. Таким образом, равенство (1) выражает свойство, общее всем точкам плоскости и только им. Согласно § 7 гл. 11 имеем:

и, значит, уравнение (1) может быть переписано в виде:

Уравнение (Г) выражает собой условие, при котором точка ) лежит на данной плоскости, и называется нормальным уравнением этой плоскости. Радиус-вектор произвольной точки М плоскости называется текущим радиусом-вектором.

Уравнение (1) плоскости записано в векторной форме. Переходя к координатам и помещая начало координат в начале векторов - точке О, заметим, что проекциями единичного вектора на оси координат служат косинусы углов , составленных осями с этим вектором, а проекциями радиуса-вектора точки М

служат координаты точки , т. е. имеем:

Уравнение (Г) переходит в координатное:

При переводе векторного уравнения (Г) плоскости в координатное уравнение (2) мы воспользовались формулой (15) § 9 гл. 11, выражающей скалярное произведение через проекции векторов. Уравнение (2) выражает собой условие, при котором точка М(х,у, z) лежит на данной плоскости, и называется нормальным уравнением этой плоскости в координатной форме. Полученное уравнение (2) - первой степени относительно , т. е. всякая плоскость может быть представлена уравнением первой степени относительно текущих координат.

Заметим, что выведенные уравнения (1") и (2) остаются в силе и тогда, когда , т. е. данная плоскость проходит через начало координат. В этом случае за можно принять любой из двух единичных векторов, перпендикулярных к плоскости и отличающихся один от другого направлением.

Замечание. Нормальное уравнение плоскости (2) можно вывести, не пользуясь векторным методом.

Возьмем произвольную плоскость и проведем через начало координат перпендикулярно к ней прямую I. Установим на этой прямой положительное направление от начала координат к плоскости (если бы выбранная плоскость проходила через начало координат, то направление на прямой можно было бы взять любое).

Положение этой плоскости в пространстве вполне определяется расстоянием ее от начала координат, т. е. длиной отрезка оси l от начала координат до точки пересечения ее с плоскостью (на рис. 111 - отрезок ) и углами между осью и координатными осями. Когда точка координатами движется по плоскости, то ее координаты меняются так, что все время связаны некоторым условием. Посмотрим, каково это условие.

Построим на рис. 111 координатную ломаную линию OPSM произвольной точки М плоскости. Возьмем проекцию этой ломаной на ось l. Заметив, что проекция ломаной равна проекции ее замыкающею отрезка (гл. I, § 3), будем иметь.

Можно задавать разными способами (одной точкой и вектором, двумя точками и вектором, тремя точками и др.). Именно с учетом этого уравнение плоскости может иметь различные виды. Также при соблюдении определенных условий плоскости могут быть параллельными, перпендикулярными, пересекающимися и т.д. Об этом и поговорим в данной статье. Мы научимся составлять общее уравнение плоскости и не только.

Нормальный вид уравнения

Допустим, есть пространство R 3 , которое имеет прямоугольную координатную систему XYZ. Зададим вектор α, который будет выпущен из начальной точки О. Через конец вектора α проведем плоскость П, которая будет ему перпендикулярна.

Обозначим на П произвольную точку Q=(х,у,z). Радиус-вектор точки Q подпишем буквой р. При этом длина вектора α равняется р=IαI и Ʋ=(cosα,cosβ,cosγ).

Это единичный вектор, который направлен в сторону, как и вектор α. α, β и γ - это углы, которые образуются между вектором Ʋ и положительными направлениями осей пространства х, у, z соответственно. Проекция какой-либо точки QϵП на вектор Ʋ является постоянной величиной, которая равна р: (р,Ʋ) = р(р≥0).

Указанное уравнение имеет смысл, когда р=0. Единственное, плоскость П в этом случае будет пересекать точку О (α=0), которая является началом координат, и единичный вектор Ʋ, выпущенный из точки О, будет перпендикулярен к П, несмотря на его направление, что означает, что вектор Ʋ определяется с точностью до знака. Предыдущее уравнение является уравнением нашей плоскости П, выраженным в векторной форме. А вот в координатах его вид будет таким:

Р здесь больше или равно 0. Мы нашли уравнение плоскости в пространстве в нормальном виде.

Общее уравнение

Если уравнение в координатах умножим на любое число, которое не равно нулю, получим уравнение, эквивалентное данному, определяющее ту самую плоскость. Оно будет иметь такой вид:

Здесь А, В, С - это числа, одновременно отличные от нуля. Это уравнение именуется как уравнение плоскости общего вида.

Уравнения плоскостей. Частные случаи

Уравнение в общем виде может видоизменяться при наличии дополнительных условий. Рассмотрим некоторые из них.

Предположим, что коэффициент А равен 0. Это означает, что данная плоскость параллельна заданной оси Ох. В этом случае вид уравнения изменится: Ву+Cz+D=0.

Аналогично вид уравнения будет изменяться и при следующих условиях:

  • Во-первых, если В=0, то уравнение изменится на Ах+Cz+D=0, что будет свидетельствовать о параллельности к оси Оу.
  • Во-вторых, если С=0, то уравнение преобразуется в Ах+Ву+D=0, что будет говорить о параллельности к заданной оси Oz.
  • В-третьих, если D=0, уравнение будет выглядеть как Ах+Ву+Cz=0, что будет означать, что плоскость пересекает О (начало координат).
  • В-четвертых, если A=B=0, то уравнение изменится на Cz+D=0, что будет доказывать параллельность к Oxy.
  • В-пятых, если B=C=0, то уравнение станет Ах+D=0, а это означает, что плоскость к Oyz параллельна.
  • В-шестых, если A=C=0, то уравнение приобретет вид Ву+D=0, то есть будет сообщать о параллельности к Oxz.

Вид уравнения в отрезках

В случае когда числа А, В, С, D отличны от нуля, вид уравнения (0) может быть следующим:

х/а + у/b + z/с = 1,

в котором а = -D/А, b = -D/В, с = -D/С.

Получаем в итоге Стоит отметить, что данная плоскость будет пересекать ось Ох в точке с координатами (а,0,0), Оу - (0,b,0), а Oz - (0,0,с).

С учетом уравнения х/а + у/b + z/с = 1 нетрудно визуально представить размещение плоскости относительно заданной координатной системы.

Координаты нормального вектора

Нормальный вектор n к плоскости П имеет координаты, которые являются коэффициентами общего уравнения данной плоскости, то есть n (А,В,С).

Для того чтобы определить координаты нормали n, достаточно знать общее уравнение заданной плоскости.

При использовании уравнения в отрезках, которое имеет вид х/а + у/b + z/с = 1, как и при использовании общего уравнения, можно записать координаты любого нормального вектора заданной плоскости: (1/а + 1/b + 1/с).

Стоит отметить, что нормальный вектор помогает решить разнообразные задачи. К самым распространенным относятся задачи, заключающиеся в доказательстве перпендикулярности или параллельности плоскостей, задачи по нахождению углов между плоскостями или углов между плоскостями и прямыми.

Вид уравнения плоскости согласно координатам точки и нормального вектора

Ненулевой вектор n, перпендикулярный заданной плоскости, называют нормальным (нормалью) для заданной плоскости.

Предположим, что в координатном пространстве (прямоугольной координатной системе) Oxyz заданы:

  • точка Мₒ с координатами (хₒ,уₒ,zₒ);
  • нулевой вектор n=А*i+В*j+С*k.

Нужно составить уравнение плоскости, которая будет проходить через точку Мₒ перпендикулярно нормали n.

В пространстве выберем любую произвольную точку и обозначим ее М (х у,z). Пускай радиус-вектор всякой точки М (х,у,z) будет r=х*i+у*j+z*k, а радиус-вектор точки Мₒ (хₒ,уₒ,zₒ) - rₒ=хₒ*i+уₒ*j+zₒ*k. Точка М будет принадлежать заданной плоскости, если вектор МₒМ будет перпендикулярен вектору n. Запишем условие ортогональности при помощи скалярного произведения:

[МₒМ, n] = 0.

Поскольку МₒМ = r-rₒ, векторное уравнение плоскости выглядеть будет так:

Данное уравнение может иметь и другую форму. Для этого используются свойства скалярного произведения, а преобразовывается левая сторона уравнения. = - . Если обозначить как с, то получится следующее уравнение: - с = 0 или = с, которое выражает постоянство проекций на нормальный вектор радиус-векторов заданных точек, которые принадлежат плоскости.

Теперь можно получить координатный вид записи векторного уравнения нашей плоскости = 0. Поскольку r-rₒ = (х-хₒ)*i + (у-уₒ)*j + (z-zₒ)*k, а n = А*i+В*j+С*k, мы имеем:

Выходит, у нас образовывается уравнение плоскости, проходящей через точку перпендикулярно нормали n:

А*(х- хₒ)+В*(у- уₒ)С*(z-zₒ)=0.

Вид уравнения плоскости согласно координатам двух точек и вектора, коллинеарного плоскости

Зададим две произвольные точки М′ (х′,у′,z′) и М″ (х″,у″,z″), а также вектор а (а′,а″,а‴).

Теперь мы сможем составить уравнение заданной плоскости, которая будет проходить через имеющиеся точки М′ и М″, а также всякую точку М с координатами (х,у,z) параллельно заданному вектору а.

При этом векторы М′М={х-х′;у-у′;z-z′} и М″М={х″-х′;у″-у′;z″-z′} должны быть компланарными с вектором а=(а′,а″,а‴), а это значит, что (М′М, М″М, а)=0.

Итак, наше уравнение плоскости в пространстве будет выглядеть так:

Вид уравнения плоскости, пересекающей три точки

Допустим, у нас есть три точки: (х′,у′,z′), (х″,у″,z″), (х‴,у‴,z‴), которые не принадлежат одной прямой. Необходимо написать уравнение плоскости, проходящей через заданные три точки. Теория геометрии утверждает, что такого рода плоскость действительно существует, вот только она единственная и неповторимая. Поскольку эта плоскость пересекает точку (х′,у′,z′), вид ее уравнения будет следующим:

Здесь А, В, С отличные от нуля одновременно. Также заданная плоскость пересекает еще две точки: (х″,у″,z″) и (х‴,у‴,z‴). В связи с этим должны выполняться такого рода условия:

Сейчас мы можем составить однородную систему с неизвестными u, v, w:

В нашем случае х,у или z выступает произвольной точкой, которая удовлетворяет уравнение (1). Учитывая уравнение (1) и систему из уравнений (2) и (3), системе уравнений, указанной на рисунке выше, удовлетворяет вектор N (А,В,С), который является нетривиальным. Именно потому определитель данной системы равняется нулю.

Уравнение (1), которое у нас получилось, это и есть уравнение плоскости. Через 3 точки она точно проходит, и это легко проверить. Для этого нужно разложить наш определитель по элементам, находящимся в первой строке. Из существующих свойств определителя вытекает, что наша плоскость одновременно пересекает три изначально заданные точки (х′,у′,z′), (х″,у″,z″), (х‴,у‴,z‴). То есть мы решили поставленную перед нами задачу.

Двухгранный угол между плоскостями

Двухгранный угол представляет собой пространственную геометрическую фигуру, образованную двумя полуплоскостями, которые исходят из одной прямой. Иными словами, это часть пространства, которая ограничивается данными полуплоскостями.

Допустим, у нас имеются две плоскости со следующими уравнениями:

Нам известно, что векторы N=(А,В,С) и N¹=(А¹,В¹,С¹) перпендикулярны согласно заданным плоскостям. В связи с этим угол φ меж векторами N и N¹ равняется углу (двухгранному), который находится между этими плоскостями. Скалярное произведение имеет вид:

NN¹=|N||N¹|cos φ,

именно потому

cosφ= NN¹/|N||N¹|=(АА¹+ВВ¹+СС¹)/((√(А²+В²+С²))*(√(А¹)²+(В¹)²+(С¹)²)).

Достаточно учесть, что 0≤φ≤π.

На самом деле две плоскости, которые пересекаются, образуют два угла (двухгранных): φ 1 и φ 2 . Сумма их равна π (φ 1 + φ 2 = π). Что касается их косинусов, то их абсолютные величины равны, но различаются они знаками, то есть cos φ 1 =-cos φ 2 . Если в уравнении (0) заменить А, В и С на числа -А, -В и -С соответственно, то уравнение, которое мы получим, будет определять эту же плоскость, единственное, угол φ в уравнении cos φ= NN 1 /|N||N 1 | будет заменен на π-φ.

Уравнение перпендикулярной плоскости

Перпендикулярными называются плоскости, между которыми угол равен 90 градусов. Используя материал, изложенный выше, мы можем найти уравнение плоскости, перпендикулярной другой. Допустим, у нас имеются две плоскости: Ах+Ву+Cz+D=0 и А¹х+В¹у+С¹z+D=0. Мы можем утверждать, что перпендикулярными они будут, если cosφ=0. Это значит, что NN¹=АА¹+ВВ¹+СС¹=0.

Уравнение параллельной плоскости

Параллельными называются две плоскости, которые не содержат общих точек.

Условие (их уравнения те же, что и в предыдущем пункте) заключается в том, что векторы N и N¹, которые к ним перпендикулярны, коллинеарные. А это значит, что выполняются следующие условия пропорциональности:

А/А¹=В/В¹=С/С¹.

Если условия пропорциональности являются расширенными - А/А¹=В/В¹=С/С¹=DD¹,

это свидетельствует о том, что данные плоскости совпадают. А это значит, что уравнения Ах+Ву+Cz+D=0 и А¹х+В¹у+С¹z+D¹=0 описывают одну плоскость.

Расстояние до плоскости от точки

Допустим, у нас есть плоскость П, которая задана уравнением (0). Необходимо найти до нее расстояние от точки с координатами (хₒ,уₒ,zₒ)=Qₒ. Чтобы это сделать, нужно привести уравнение плоскости П в нормальный вид:

(ρ,v)=р (р≥0).

В данном случае ρ (х,у,z) является радиус-вектором нашей точки Q, расположенной на П, р - это длина перпендикуляра П, который был выпущен из нулевой точки, v - это единичный вектор, который расположен в направлении а.

Разница ρ-ρº радиус-вектора какой-нибудь точки Q=(х,у,z), принадлежащий П, а также радиус-вектора заданной точки Q 0 =(хₒ,уₒ,zₒ) является таким вектором, абсолютная величина проекции которого на v равняется расстоянию d, которое нужно найти от Q 0 =(хₒ,уₒ,zₒ) до П:

D=|(ρ-ρ 0 ,v)|, но

(ρ-ρ 0 ,v)= (ρ,v)-(ρ 0 ,v) =р-(ρ 0 ,v).

Вот и получается,

d=|(ρ 0 ,v)-р|.

Таким образом, мы найдем абсолютное значение полученного выражения, то есть искомое d.

Используя язык параметров, получаем очевидное:

d=|Ахₒ+Вуₒ+Czₒ|/√(А²+В²+С²).

Если заданная точка Q 0 находится по другую сторону от плоскости П, как и начало координат, то между вектором ρ-ρ 0 и v находится следовательно:

d=-(ρ-ρ 0 ,v)=(ρ 0 ,v)-р>0.

В случае когда точка Q 0 совместно с началом координат располагается по одну и ту же сторону от П, то создаваемый угол острый, то есть:

d=(ρ-ρ 0 ,v)=р - (ρ 0 , v)>0.

В итоге получается, что в первом случае (ρ 0 ,v)>р, во втором (ρ 0 ,v)<р.

Касательная плоскость и ее уравнение

Касающаяся плоскость к поверхности в точке касания Мº - это плоскость, содержащая все возможные касательные к кривым, проведенным через эту точку на поверхности.

При таком виде уравнения поверхности F(х,у,z)=0 уравнение касательной плоскости в касательной точке Мº(хº,уº,zº) будет выглядеть так:

F х (хº,уº,zº)(х- хº)+ F х (хº, уº, zº)(у- уº)+ F х (хº, уº,zº)(z-zº)=0.

Если задать поверхность в явной форме z=f (х,у), то касательная плоскость будет описана уравнением:

z-zº =f(хº, уº)(х- хº)+f(хº, уº)(у- уº).

Пересечение двух плоскостей

В расположена система координат (прямоугольная) Oxyz, даны две плоскости П′ и П″, которые пересекаются и не совпадают. Поскольку любая плоскость, находящаяся в прямоугольной координатной системе, определяется общим уравнением, будем полагать, что П′ и П″ задаются уравнениями А′х+В′у+С′z+D′=0 и А″х+В″у+С″z+D″=0. В таком случае имеем нормаль n′ (А′,В′,С′) плоскости П′ и нормаль n″ (А″,В″,С″) плоскости П″. Поскольку наши плоскости не параллельны и не совпадают, то эти векторы являются не коллинеарными. Используя язык математики, мы данное условие можем записать так: n′≠ n″ ↔ (А′,В′,С′) ≠ (λ*А″,λ*В″,λ*С″), λϵR. Пускай прямая, которая лежит на пересечении П′ и П″, будет обозначаться буквой а, в этом случае а = П′ ∩ П″.

а - это прямая, состоящая из множества всех точек (общих) плоскостей П′ и П″. Это значит, что координаты любой точки, принадлежащей прямой а, должны одновременно удовлетворять уравнения А′х+В′у+С′z+D′=0 и А″х+В″у+С″z+D″=0. Значит, координаты точки будут частным решением следующей системы уравнений:

В итоге получается, что решение (общее) этой системы уравнений будет определять координаты каждой из точек прямой, которая будет выступать точкой пересечения П′ и П″, и определять прямую а в координатной системе Oxyz (прямоугольной) в пространстве.

Уравнение плоскости. Как составить уравнение плоскости?
Взаимное расположение плоскостей. Задачи

Пространственная геометрия не намного сложнее «плоской» геометрии, и наши полёты в пространстве начинаются с данной статьи. Для усвоения темы необходимо хорошо разобраться в векторах , кроме того, желательно быть знакомым с геометрией плоскости – будет много похожего, много аналогий, поэтому информация переварится значительно лучше. В серии моих уроков 2D-мир открывается статьёй Уравнение прямой на плоскости . Но сейчас Бэтмен сошёл с плоского экрана телевизора и стартует с космодрома Байконур.

Начнём с чертежей и обозначений. Схематически плоскость можно нарисовать в виде параллелограмма, что создаёт впечатление пространства:

Плоскость бесконечна, но у нас есть возможность изобразить лишь её кусочек. На практике помимо параллелограмма также прорисовывают овал или даже облачко. Мне по техническим причинам удобнее изображать плоскость именно так и именно в таком положении. Реальные плоскости, которые мы рассмотрим в практических примерах, могут располагаться как угодно – мысленно возьмите чертёж в руки и покрутите его в пространстве, придав плоскости любой наклон, любой угол.

Обозначения : плоскости принято обозначать маленькими греческими буквами , видимо, чтобы не путать их с прямой на плоскости или с прямой в пространстве . Я привык использовать букву . На чертеже именно буква «сигма», а вовсе не дырочка. Хотя, дырявая плоскость, это, безусловно, весьма забавно.

В ряде случаев для обозначения плоскостей удобно использовать те же греческие буквы с нижними подстрочными индексами, например, .

Очевидно, что плоскость однозначно определяется тремя различными точками, не лежащими на одной прямой. Поэтому достаточно популярны трёхбуквенные обозначения плоскостей – по принадлежащим им точкам, например, и т.д. Нередко буквы заключают в круглые скобки: , чтобы не перепутать плоскость с другой геометрической фигурой.

Для опытных читателей приведу меню быстрого доступа :

  • Как составить уравнение плоскости по точке и двум векторам?
  • Как составить уравнение плоскости по точке и вектору нормали?

и мы не будем томиться долгими ожиданиями:

Общее уравнение плоскости

Общее уравнение плоскости имеет вид , где коэффициенты одновременно не равны нулю.

Ряд теоретических выкладок и практических задач справедливы как для привычного ортонормированного базиса, так и для аффинного базиса пространства (если масло - масляное, вернитесь к уроку Линейная (не) зависимость векторов. Базис векторов ). Для простоты будем полагать, что все события происходят в ортонормированном базисе и декартовой прямоугольной системе координат.

А теперь немного потренируем пространственное воображение. Ничего страшного, если у вас оно плохое, сейчас немного разовьём. Даже для игры на нервах нужны тренировки.

В самом общем случае, когда числа не равны нулю, плоскость пересекает все три координатные оси. Например, так:

Ещё раз повторю, что плоскость бесконечно продолжается во все стороны, и у нас есть возможность изобразить только её часть.

Рассмотрим простейшие уравнения плоскостей:

Как понимать данное уравнение? Вдумайтесь: «зет» ВСЕГДА, при любых значениях «икс» и «игрек» равно нулю. Это уравнение «родной» координатной плоскости . Действительно, формально уравнение можно переписать так: , откуда хорошо видно, что нам по барабану, какие значения принимают «икс» и «игрек», важно, что «зет» равно нулю.

Аналогично:
– уравнение координатной плоскости ;
– уравнение координатной плоскости .

Немного усложним задачу, рассмотрим плоскость (здесь и далее в параграфе предполагаем, что числовые коэффициенты не равны нулю). Перепишем уравнение в виде: . Как его понимать? «Икс» ВСЕГДА, при любых значениях «игрек» и «зет» равно некоторому числу . Эта плоскость параллельна координатной плоскости . Например, плоскость параллельна плоскости и проходит через точку .

Аналогично:
– уравнение плоскости, которая параллельна координатной плоскости ;
– уравнение плоскости, которая параллельна координатной плоскости .

Добавим членов: . Уравнение можно переписать так: , то есть «зет» может быть любым. Что это значит? «Икс» и «игрек» связаны соотношением , которое прочерчивает в плоскости некоторую прямую (узнаёте уравнение прямой на плоскости ?). Поскольку «зет» может быть любым, то эта прямая «тиражируется» на любой высоте. Таким образом, уравнение определяет плоскость, параллельную координатной оси

Аналогично:
– уравнение плоскости, которая параллельна координатной оси ;
– уравнение плоскости, которая параллельна координатной оси .

Если свободные члены нулевые, то плоскости будут непосредственно проходить через соответствующие оси. Например, классическая «прямая пропорциональность»: . Начертите в плоскости прямую и мысленно размножьте её вверх и вниз (так как «зет» любое). Вывод: плоскость, заданная уравнением , проходит через координатную ось .

Завершаем обзор: уравнение плоскости проходит через начало координат. Ну, здесь совершенно очевидно, что точка удовлетворяет данному уравнению.

И, наконец, случай, который изображён на чертеже: – плоскость дружит со всеми координатными осями, при этом она всегда «отсекает» треугольник, который может располагаться в любом из восьми октантов.

Линейные неравенства в пространстве

Для понимания информации необходимо хорошо изучить линейные неравенства на плоскости , поскольку многие вещи буду похожи. Параграф будет носить краткий обзорный характер с несколькими примерами, так как материал на практике встречается довольно редко.

Если уравнение задаёт плоскость, то неравенства
задают полупространства . Если неравенство нестрогое (два последних в списке), то в решение неравенства кроме полупространства входит и сама плоскость.

Пример 5

Найти единичный нормальный вектор плоскости .

Решение : Единичный вектор – это вектор, длина которого равна единице. Обозначим данный вектор через . Совершенно понятно, что векторы коллинеарны:

Сначала из уравнения плоскости снимем вектор нормали: .

Как найти единичный вектор? Для того чтобы найти единичный вектор , нужно каждую координату вектора разделить на длину вектора .

Перепишем вектор нормали в виде и найдём его длину:

Согласно вышесказанному:

Ответ :

Проверка: , что и требовалось проверить.

Читатели, которые внимательно изучили последний параграф урока , наверное, заметили, что координаты единичного вектора – это в точности направляющие косинусы вектора :

Отвлечёмся от разобранной задачи: когда вам дан произвольный ненулевой вектор , и по условию требуется найти его направляющие косинусы (см. последние задачи урока Скалярное произведение векторов ), то вы, по сути, находите и единичный вектор, коллинеарный данному. Фактически два задания в одном флаконе.

Необходимость найти единичный вектор нормали возникает в некоторых задачах математического анализа.

С выуживанием нормального вектора разобрались, теперь ответим на противоположный вопрос:

Как составить уравнение плоскости по точке и вектору нормали?

Эту жёсткую конструкцию вектора нормали и точки хорошо знает мишень для игры в дартс. Пожалуйста, вытяните руку вперёд и мысленно выберите произвольную точку пространства, например, маленькую кошечку в серванте. Очевидно, что через данную точку можно провести единственную плоскость, перпендикулярную вашей руке.

Уравнение плоскости, проходящей через точку перпендикулярно вектору , выражается формулой:

  • 24. Линейная зависимость столбцов матрицы. Свойства Линейная зависимость и независимость строк (столбцов) матрицы
  • Свойства линейно зависимых и линейно независимых столбцов матриц
  • 25. Базисный минор. Теорема о базисном миноре. Теорема о ранге.
  • 26. Системы линейных уравнений. Теорема Кронекера - Капелли о совместимости систем.
  • 27. Однородные системы линейных уравнений. Свойства их решений. Общее решение ослу.
  • 28. Фундаментальная система решений ослу
  • 29. Неоднородные системы линейных уравнений. Свойства их решений. Построение общего решения нслу.
  • 30. Линейные пространства. Определение. Примеры, следствия из аксиом.
  • 31. Линейная зависимость векторов линейного пространства. Свойства
  • 32. Базис линейного пространства. Размерность
  • 33. Единственность разложения векторов по базису. Координаты. Действия над векторами в координатной форме.
  • 34. Изменение координат вектора при переходе к новому базису. Матрица перехода.
  • 35. Евклидово пространство. Определение, примеры. Модуль вектора. Угол между векторами. Неравенство Коши-Буняковского.
  • 36. Линейный оператор. Матрица линейного оператора. Изменение матрицы линейного оператора при переходе к новому базису.
  • 37. Образ и ядро линейного оператора. Ранг линейного оператора.
  • 38.В отдельном файле.
  • 39. Собственные векторы и собственные значения линейного оператора. Их свойства
  • 40. Последовательность. Предел последовательности. Ограниченные, неограниченные, бесконечно малые и бесконечно большие последовательности. Определение
  • [Править]Примеры
  • [Править]Операции над последовательностями
  • [Править]Подпоследовательности
  • [Править]Примеры
  • [Править]Свойства
  • [Править]Предельная точка последовательности
  • [Править]Предел последовательности
  • [Править]Некоторые виды последовательностей
  • [Править]Ограниченные и неограниченные последовательности
  • [Править]Критерий ограниченности числовой последовательности
  • [Править]Свойства ограниченных последовательностей
  • [Править]Бесконечно большие и бесконечно малые последовательности
  • [Править]Свойства бесконечно малых последовательностей
  • [Править]Сходящиеся и расходящиеся последовательности
  • [Править]Свойства сходящихся последовательностей
  • 41. Понятие функции. Способы задания функции.
  • 42. Предел функции в точке, в бесконечности. Геометрическая интерпретация. Определения и примеры.
  • 43. Теоремы о пределах:
  • 44. Непрерывные функции и их свойства:
  • Свойства Локальные
  • Глобальные
  • Теорема о сохранении знака для непрерывной функции
  • Доказательство
  • 45. Первый замечательный предел. Следствия. Теорема о пределе суммы, произведения и частного.
  • 46. Ограниченные функции и их свойства. Необходимое условие существования предела функции в точке.
  • 47. Бесконечно малые функции, их свойства. Леммы
  • Леммы о бесконечно малых
  • 48. Критерий существования предела функции в точке.
  • 49. Бесконечно большие функции, связь с бесконечно малыми функциями.
  • 50. Раскрытие неопределенностей. Второй замечательный предел.
  • 51. Эквивалентные бесконечно малые функции. Таблица эквивалентных бесконечно малых функций.
  • 52. Теорема о применении эквивалентных бесконечно малых к вычислению пределов.
  • 3.2. Основные формулы эквивалентности бесконечно малых.
  • 53. Односторонние пределы функции в точке. Односторонняя непрерывность функции в точке.
  • 54. Точки разрыва функции и их классификация.
  • 55. Свойства функций, непрерывных на отрезке.
  • 56. Задачи, приводящие к понятию производной. Понятие производной. Геометрический и физический смысл производной.
  • 1.1 Задачи, приводящие к понятию производной
  • , Если.
  • 57. Дифференцируемость функции. Критерий дифференцируемости функции в точке.
  • 57. Дифференцируемость функции. Критерий дифференцируемости функции в точке.
  • 58. Производная сложной функции.
  • 59. Дифференциал функции. Инвариантность формы записи первого дифференциала.
  • 60. Обратная функция и ее производная.
  • 60. Обратная функция и ее производная.
  • 61. Правила дифференцирования.
  • 63. Логарифмическое дифференцирование. Производная степенно-показательной функции.
  • 5.4. Производная степенно-показательной функции
  • 64. См. Отдельный файл.
  • 65. Теоремы о среднем – Ферма, Ролля.
  • 66. Теоремы о среднем – Лагранжа, Коши.
  • 67. Дифференциалы высших порядков. Неинвариантность формы записи.
  • 68. Правило Лопиталя. Раскрытие неопределенностей с использованием правила Лопиталя.
  • 69. Формула Тейлора. Разложение функции по формуле Тейлора.
  • 70. Монотонность функции. Условия монотонности.
  • 71. Экстремумы функции. Необходимое условие существования экстремума.
  • 72. Достаточные условия экстремума.
  • 73. Выпуклость и вогнутость графика функции. Точки перегиба.
  • 74. Асимптоты графика.
  • [Править]Виды асимптот графиков [править]Вертикальная
  • [Править]Горизонтальная
  • [Править]Наклонная
  • [Править]Нахождение асимптот
  • 76. Метод замены переменных в неопределенном интеграле.
  • 77. Интегрирование по частям в неопределенном интеграле. Классы функций, интегрируемых по частям.
  • 78. Рациональные дроби. Разложение рациональных дробей на сумму простейших.
  • 79. Интегрирование простейших рациональных дробей.
  • 80. Интегрирование тригонометрических функций.
  • 81. Интегрирование иррациональностей вида…
  • 82. Интегрирование иррациональностей вида…
  • 83. Понятие определенного интеграла, его геометрический смысл и свойства. Теорема о среднем.
  • 84. Интеграл с переменным верхним пределом. Формула Ньютона-Лейбница.
  • 85. Полярная система координат. Уравнения кривых в полярной системе координат.
  • Уравнение кривых в полярных координатах
  • Окружность
  • Полярная роза
  • Спираль Архимеда
  • Конические сечения
  • 86. Вычисление определенного интеграла. Применение его к вычислению площадей плоских фигур, длины дуги кривой.
  • 87. Вычисление объемов тел, объемов тел вращения.
  • 88. Приложение определенного интеграла к задачам физики.
  • 89. Несобственные интегралы I рода.
  • 89. Несобственные интегралы I рода.
  • Несобственные интегралы I рода
  • Геометрический смысл несобственного интеграла I рода
  • Примеры
  • 90. Несобственные интегралы II рода.
  • Геометрический смысл несобственных интегралов II рода
  • Нормальное уравнение плоскости.

    Общее уравнение плоскости вида называют нормальным уравнением плоскости , если длина вектора равна единице, то есть, , и .

    Часто можно видеть, что нормальное уравнение плоскости записывают в виде . Здесь - направляющие косинусы нормального вектора данной плоскости единичной длины, то есть , а p – неотрицательное число, равное расстоянию от начала координат до плоскости.

    Нормальное уравнение плоскости в прямоугольной системе координат Oxyz определяет плоскость, которая удалена от начала координат на расстояние p в положительном направлении нормального вектора этой плоскости . Если p=0 , то плоскость проходит через начало координат.

    Приведем пример нормального уравнения плоскости.

    Пусть плоскость задана в прямоугольной системе координат Oxyz общим уравнение плоскости вида . Это общее уравнение плоскости является нормальным уравнением плоскости. Действительно, и нормальный вектор этой плоскости имеет длину равную единице, так как .

    Уравнение плоскости в нормальном виде позволяет находить расстояние от точки до плоскости.

      Расстояние от точки до плоскости.

    Расстояние от точки до плоскости - это наименьшее из расстояний между этой точкой и точками плоскости. Известно, что расстояние от точки до плоскости равно длине перпендикуляра, опущенного из этой точки на плоскость.

    Если и начало координат лежат по разные стороны плоскости, в противоположном случае. Расстояние от точки до плоскости равно

      Взаимное расположение плоскостей. Условия параллельности и перпендикулярности плоскостей.

    Расстояние между параллельными плоскостями

    Связанные понятия

      Плоскости параллельны , если

    или (Векторное произведение)

      Плоскости перпендикулярны , если

    Или . (Скалярное произведение)

      Прямая в пространстве. Различные виды уравнения прямой.

    Уравнения прямой в пространстве – начальные сведения.

    Уравнение прямой на плоскости Oxy представляет собой линейное уравнение с двумя переменными x и y , которому удовлетворяют координаты любой точки прямой и не удовлетворяют координаты никаких других точек. С прямой в трехмерном пространстве дело обстоит немного иначе – не существует линейного уравнения с тремя переменными x , y и z , которому бы удовлетворяли только координаты точек прямой, заданной в прямоугольной системе координат Oxyz . Действительно, уравнение вида , гдеx , y и z – переменные, а A , B , C и D – некоторые действительные числа, причем А , В и С одновременно не равны нулю, представляет собой общее уравнение плоскости . Тогда встает вопрос: «Каким же образом можно описать прямую линию в прямоугольной системе координат Oxyz »?

    Ответ на него содержится в следующих пунктах статьи.

    Уравнения прямой в пространстве - это уравнения двух пересекающихся плоскостей.

    Напомним одну аксиому: если две плоскости в пространстве имеют общую точку, то они имеют общую прямую, на которой находятся все общие точки этих плоскостей. Таким образом, прямую линию в пространстве можно задать, указав две плоскости, пересекающиеся по этой прямой.

    Переведем последнее утверждение на язык алгебры.

    Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz и известно, что прямая a является линией пересечения двух плоскостей и, которым отвечают общие уравнения плоскости видаисоответственно. Так как прямаяa представляет собой множество всех общих точек плоскостей и, то координаты любой точки прямой a будут удовлетворять одновременно и уравнениюи уравнению, координаты никаких других точек не будут удовлетворять одновременно обоим уравнениям плоскостей. Следовательно, координаты любой точки прямойa в прямоугольной системе координат Oxyz представляют собой частное решение системы линейных уравнений вида , а общее решение системы уравненийопределяет координаты каждой точки прямойa , то есть, определяет прямую a .

    Итак, прямая в пространстве в прямоугольной системе координат Oxyz может быть задана системой из уравнений двух пересекающихся плоскостей .

    Вот пример задания прямой линии в пространстве с помощью системы двух уравнений - .

    Описание прямой линии уравнениями двух пересекающихся плоскостей отлично подходит принахождении координат точки пересечения прямой и плоскости , а также при нахождении координат точки пересечения двух прямых в пространстве .

    Рекомендуем продолжить изучение этой темы, обратившись к статье уравнения прямой в пространстве - уравнения двух пересекающихся плоскостей . В ней дана более детальная информация, подробно разобраны решения характерных примеров и задач, а также показан способ перехода к уравнениям прямой в пространстве другого вида.

    Следует отметить, что существуют различные способы задания прямой в пространстве , и на практике прямая чаще задается не двумя пересекающимися плоскостями, а направляющим вектором прямой и точкой, лежащей на этой прямой. В этих случаях проще получить канонические и параметрические уравнения прямой в пространстве. О них поговорим в следующих пунктах.

    Параметрические уравнения прямой в пространстве.

    Параметрические уравнения прямой в пространстве имеют вид ,

    где x 1 ,y 1 и z 1 – координаты некоторой точки прямой, a x , a y и a z (a x , a y и a z одновременно не равны нулю) - соответствующие координаты направляющего вектора прямой , а - некоторый параметр, который может принимать любые действительные значения.

    При любом значении параметра по параметрическим уравнениям прямой в пространстве мы можем вычислить тройку чисел,

    она будет соответствовать некоторой точке прямой (отсюда и название этого вида уравнений прямой). К примеру, при

    из параметрических уравнений прямой в пространстве получаем координаты x 1 , y 1 и z 1 : .

    В качестве примера рассмотрим прямую, которую задают параметрические уравнения вида . Эта прямая проходит через точку, а направляющий вектор этой прямой имеет координаты.

    Рекомендуем продолжить изучение темы, обратившись к материалу статьи параметрические уравнения прямой в пространстве . В ней показан вывод параметрических уравнений прямой в пространстве, разобраны частные случаи параметрических уравнений прямой в пространстве, даны графические иллюстрации, приведены развернутые решения характерных задач и указана связь параметрических уравнений прямой с другими видами уравнений прямой.

    Канонические уравнения прямой в пространстве.

    Разрешив каждое из параметрических уравнений прямой вида относительно параметра, легко перейти кканоническим уравнениям прямой в пространстве вида .

    Канонические уравнения прямой в пространстве определяют прямую, проходящую через точку, а направляющим вектором прямой является вектор. К примеру, уравнения прямой в каноническом видесоответствуют прямой, проходящей через точку пространства с координатами, направляющий вектор этой прямой имеет координаты.

    Следует отметить, что одно или два из чисел в канонических уравнениях прямой могут быть равны нулю (все три числаодновременно не могут быть равны нулю, так как направляющий вектор прямой не может быть нулевым). Тогда запись видасчитается формальной (так как в знаменателях одной или двух дробей будут нули) и ее следует понимать как, где.

    Если одно из чисел в канонических уравнениях прямой равно нулю, то прямая лежит в одной из координатных плоскостей, либо в плоскости ей параллельной. Если два из чиселравны нулю, то прямая либо совпадает с одной из координатных осей, либо параллельна ей. Например прямая, соответствующая каноническим уравнениям прямой в пространстве вида, лежит в плоскостиz=-2 , которая параллельна координатной плоскости Oxy , а координатная ось Oy определяется каноническими уравнениями .

    Графические иллюстрации этих случаев, вывод канонических уравнений прямой в пространстве, подробные решения характерных примеров и задач, а также переход от канонических уравнений прямой к другим уравнениям прямой в пространстве смотрите в статье канонические уравнения прямой в пространстве .

      Общее уравнение прямой. Переход от общего к каноническому уравнению.

    "

    Рассмотрим в пространстве плоскость Q. Положение ее вполне определяется заданием вектора N, перпендикулярного этой плоскости, и некоторой фиксированной точки лежащей в плоскости Q. Вектор N, перпендикулярный плоскости Q, называется нормальным вектором этой плоскости. Если обозначить через А, В и С проекции нормального вектора N, то

    Выведем уравнение плоскости Q, проходящей через данную точку и имеющей данный нормальный вектор . Для этого рассмотрим вектор соединяющий точку с произвольной точкой плоскости Q (рис. 81).

    При любом положении точки М на плоскости Q вектор МХМ перпендикулярен нормальному вектору N плоскости Q. Поэтому скалярное произведение Запишем скалярное произведение через проекции. Так как , а вектор , то

    и, следовательно,

    Мы показали, что координаты любой точки плоскости Q удовлетворяют уравнению (4). Нетрудно заметить, что координаты точек, не лежащих на плоскости Q, этому уравнению не удовлетворяют (в последнем случае ). Следовательно, нами получено искомое уравнение плоскости Q. Уравнение (4) называется уравнением плоскости, проходящей через данную точку. Оно первой степени относительно текущих координат

    Итак, мы показали, что всякой плоскости соответствует уравнение первой степени относительно текущих координат.

    Пример 1. Написать уравнение плоскости, проходящей через точку перпендикулярно вектору .

    Решение. Здесь . На основании формулы (4) получим

    или, после упрощения,

    Придавая коэффициентам А, В и С уравнения (4) различные значения, мы можем получить уравнение любой плоскости, проходящей через точку . Совокупность плоскостей, проходящих через данную точку, называется связкой плоскостей. Уравнение (4), в котором коэффициенты А, В и С могут принимать любые значения, называются уравнением связки плоскостей.

    Пример 2. Составить уравнение плоскости, проходящей через три точки , (рис. 82).

    Решение. Напишем уравнение связки плоскостей, проходящих через точку